

Welcome to the DLKit documentation!

This documentation for the Digital Learning Toolkit (DLKit), like the toolkit itself,
is still under development. It currently covers only a small handful of the 160 service packages
and 9,000 educational service APIs that have been defined by MIT’s Office of Digital Learning and
its collaborators to date.

The DLKit codebase is generated from the Open Service Interface Definitions (OSIDs),
an extensive and growing suite of interface contract specifications that describe the
integration points among the core services and components that make up modern educational systems.

Note that this documentation is intended for API consumers. However, at the heart of DLKit is an
integration stack that is even more closely aligned with the OSID specifications. This has been
designed to allow third parties to extend the library with alternative or additional implementations
of any of the defined services for the purposes of service integration, technology migration,
service adaptation, etc. Documentation written for service implementers and system integrators,
including implementation notes and compliance information, will be provided elsewhere.

The complete OSID specification can be found at http://osid.org/specifications.

If you are interested in learning more about the DLKit Python libraries documented here,
please contact dlkit-info@mit.edu

Contents:

	Tutorial: DLKit Learning Service Basics
	The Runtime Manager and Proxy Authentication

	Loading the Learning Manager

	Looking up Objective Banks

	OSID Ids

	Looking up Objectives

	Authorization Hints

	The Objective Object

	OSID Types

	Assessment
	Summary

	Service Managers

	Bank

	Objects

	Queries

	Records

	Rules

	Commenting
	Summary

	Service Managers

	Book

	Objects

	Queries

	Records

	Learning
	Summary

	Service Managers

	Objective Bank

	Objects

	Queries

	Records

	Repository
	Summary

	Service Managers

	Repository

	Objects

	Queries

	Records

Indices and tables

	Index

	Module Index

	Search Page

Tutorial: DLKit Learning Service Basics

This tutorial is under development. It currently focuses on aspects of the Learning service. At the
time of this writing, MIT’s Office of Digital Learning is supporting a production learning objective management
service called the MIT Core Concept Catalog (MC3 [http://mc3.mit.edu/]). DLKit includes an underlying implementation that uses MC3 for
persistence. As a result, this tutorial uses examples primarily from this particular service, which deals with
managing learning objectives, learning paths and relationships between learning objectives and educational
assets, assessments, etc, since there is data available for testing.

All of the other DLKit Interface Specifications build on most of the
same patterns outlined in this tutorial, beginning with loading managers. Make sure that the dlkit
package is in your python path or install the library.

The Runtime Manager and Proxy Authentication

Service managers are instantiated through a Runtime Manger, which are designed to work with certain runtime environments,
like Django or edX/XBlock runtimes. To get access to these runtime environments please contact dlkit-info@mit.edu. Install the
runtime environment you want to use and make sure that your Django project’s settings.py includes dlkit_django or
dlkit_xblock as appropriate.

Now you can get the RuntimeManager root instance for your runtime environment. Note that there is only one, and
it gets instantiated at environment launch time, it is thread-safe and used by all consumer application sessions:

from dlkit_django import runtime

This runtime object is your gateway to access all the underlying service managers and their respective service sessions and functionality

The django runtime knows about Django’s own services for users. You will have access to an HTTPRequest object that includes an user authentication (the
request variable in the examples below). This needs to be encapsulated in a Proxy object:

from dlkit_django import PROXY_SESSION
condition = PROXY_SESSION.get_proxy_condition()
condition.set_http_request(request)
proxy = PROXY_SESSION.get_proxy(condition)

Or, if you are standing up dlkit in edX, get an XBlockUser() object from the xblock runtime.
That object is assumed to be stored the ‘xblock_user’ variable below:

from dlkit_xblock import PROXY_SESSION
condition = PROXY_SESSION.get_proxy_condition()
condition.set_xblock_user(xblock_user)
proxy = PROXY_SESSION.get_proxy(condition)

Now you have a Proxy object that holds the user data and eventually other stuff, like locale information, etc,
that can be used to instantiate new service Managers, which you can also insert into your HttpRequest.session:

from dlkit_django import RUNTIME
request.session.lm = RUNTIME.get_service_manager('LEARNING', proxy)

For the duration of the session you can use this for all the other things.
that you normally do.

There is a lot more you can do with the RuntimeManager, but getting service managers will be the most common task. One of the other
important tasks of this manager, is configuration the underlying service stack based on the configs.py file and associated helpers. We
will cover this later.

Loading the Learning Manager

All consumer applications wishing to use the DLKit Learning service should start by instantiating
a LearningManager (don’t worry about the proxy for now):

lm = runtime.get_service_manager('LEARNING')

Everything you need to do within the learning service can now be
accessed through this manager. An OSID service Manager is used like a factory, providing all
the other objects necessary for using the service. You should never try to instantiate any
other OSID object directly, even if you know where its class definition resides.

The simplest thing you can do with a manager is to inspect its display_name and description
methods. Note that DLKit always returns user-readable strings as DisplayText
objects. The actual text is available via the get_text() method.
Other DisplayText methods return the LanguageType, ScriptType and
FormatType of the text to be displayed:

print "Learning Manager successfully instantiated:"
print " " + lm.get_display_name().get_text()
print " " + lm.get_description().get_text()
print (" (this description was written using the " +
 lm.get_description().get_language_type().get_display_label().get_text() +
 " language)\n")

Results in something that looks like this:

Learning Manager successfully instantiated:
 MC3 Learning Service
 OSID learning service implementation of the MIT Core Concept Catalog (MC3)
 (this description was written using the English language)

 # Note that the implementation name and description may be different for you.
 # It will depend on which underlying service implementation your dlkit library is
 # configured to point to. More on this later

Alternatively, the Python OSID service interfaces also specify
property attributes for all basic “getter” methods, so the above
could also be written more Pythonically as:

print "Learning Manager successfully instantiated:"
print " " + lm.display_name.text
print " " + lm.description.text
print (" (this description was written using the " +
 lm.description.language_type.display_label.text + " language)\n")

For the remainder of this tutorial we will use the property attributes
wherever available.

Looking up Objective Banks

Managers encapsulate service profile information, allowing a consumer
application to ask questions about which functions are supported in the underlying
service implementations that it manages:

if lm.supports_objective_bank_lookup():
 print "This Learning Manager can be used to lookup ObjectiveBanks"
else:
 print "What a lame Learning Manager. It can't even lookup ObjectiveBanks"

The LearningManager also provides methods for getting ObjectiveBanks.
One of the most useful is get_objective_banks(), which will return an iterator
containing all the banks known to the underlying implementations. This is
also available as a property, so treating objective_banks as an
attribute works here too:

if lm.supports_objective_bank_lookup():
 banks = lm.objective_banks
 for bank in banks:
 print bank.display_name.text
else:
 print "Objective bank lookup is not supported."

This will print a list of the names of all the banks, which can be thought of as catalogs
for organizing learning objectives and other related information. At the time of this writing
the following resulted:

Crosslinks
Chemistry Bridge
i2.002
Python Test Sandbox
x.xxx

Note that the OSIDs specify to first ask whether a functional area is supported
before trying to use it. However, if you wish to adhere to the Pythonic EAFP (easier
to ask forgiveness than permission) programming style, managers will throw an
Unimplemented exception if support is not available:

try:
 banks = lm.objective_banks
except Unimplemented:
 print "Objective bank lookup is not supported."
else:
 for bank in banks:
 print bank.display_name.text

The object returned from the call to get_objective_banks() is an
OsidList object, which as you can see from the example is just a Python iterator.
Like all iterators it is “wasting”, meaning that, unlike a Python list it
will be completely used up and empty after all the elements have been retrieved.

Like any iterator an OsidList object can be cast as a more persistent Python
list, like so:

banks = list(obls.objective_banks)

Which is useful if the consuming application needs to keep it around for a while.
However, when we start dealing with OsidLists from service implementations which
may return very large result sets, or where the underlying data changes often, casting
as a list may not be wise. Developers are encouraged to treat these as
iterators to the extent possible, and refresh from the session as necessary.

You can also inspect the number of available elements in the expected way:

len(obls.objective_banks)
 # or
banks = obls.objective_banks
len(banks)

And walk through the list one-at-a-time, in for statements, or by calling next():

banks = lm.objective_banks
crosslinks_bank = banks.next() # At the time of this writing, Crosslinks was first
chem_bridge_bank = banks.next() # and Chemistry Bridge was second

OSID Ids

To begin working with OSID objects, like ObjectiveBanks it is important to understand
how the OSIDs deal with identity. When an OSID object is asked for its id
an OSID Id object is returned. This is not a ``string``. It is the unique identifier object
for the OSID object. Any requests for getting a specific object by its unique identifier will be
accomplished through passing this Id object back through the service.

Ids are obtained by calling an OSID object’s get_id() method,
which also provides an ident attribute property associated with it for convenience
(id is a reserved word in Python so it is not used)

	OsidObject.ident
	Gets the Id associated with this instance of this OSID object.

So we can try this out:

crosslinks_bank_id = crosslinks_bank.ident
chem_bridge_bank_id = chem_bridge_bank.ident

Ids can be compared for equality:

crosslinks_bank_id == chem_bridge_bank_id
 # should return False

crosslinks_bank_id in [crosslinks_bank_id, chem_bridge_bank_id]
 # should return True

If a consumer wishes to persist the identifier then it should serialize the
returned Id object, and all Ids can provide a string representation for this purpose:

id_str_to_perist = str(crosslinks_bank_id)

A consumer application can also stand up an Id from a persisted string. There is an implementation
of the Id primitive object available through the runtime environment for this purpose. For instance, from
the dlkit_django package:

from dlkit_django.primordium import Id
crosslinks_bank_id = Id(id_str_to_persist)

Once an application has its hands on an Id object it can go ahead and
retrieve the corresponding Osid Object through a Lookup Session:

crosslinks_bank_redux = obls.get_objective_bank(crosslinks_bank_id)

We now have two different objects representing the same Crosslinks bank,
which can be determined by comparing Ids:

crosslinks_bank_redux == crosslinks_bank
 # should be False

crosslinks_bank_redux.ident == crosslinks_bank_id
 # should be True

Looking up Objectives

ObjectiveBanks provide methods for looking up and retrieving learning
Objectives, in bulk, by Id, or by Type. Some of the more useful
methods include:

	ObjectiveBank.can_lookup_objectives()
	Tests if this user can perform Objective lookups.

	ObjectiveBank.objectives
	Gets all Objectives.

	ObjectiveBank.get_objective(objective_id)
	Gets the Objective specified by its Id.

	ObjectiveBank.get_objectives_by_genus_type(...)
	Gets an ObjectiveList corresponding to the given objective genus Type which does not include objectives of genus types derived from the specified Type.

So let’s try to find an Objective in the Crosslinks bank with a display name of
“Definite integral”. (Note, that there are also methods for
querying Objectives by various attributes. More on that later.):

for objective in crosslinks_bank:
 if objective.display_name.text == 'Definite integral':
 def_int_obj = objective

Now we have our hands on an honest-to-goodness learning objective as defined by an
honest-to-goodness professor at MIT!

Authorization Hints

Many service implementations will require authentication and authorization for
security purposes (authn/authz). Authorization checks will be done when the consuming application
actually tries to invoke a method for which authz is required, and if
its found that the currently logged-in user is not authorized, then the implementation
will raise a PermissionDenied error.

However, sometimes its nice to be able to check in advance whether or not the user
is likely to be denied access. This way a consuming application can decide, for
instance, to hide or “gray out” UI widgets for doing un-permitted functions. This
is what the methods like can_lookup_objectives are for. They simply return a
boolean.

The Objective Object

Objectives inherit from OsidObjects (ObjectiveBanks do too, by the way),
which means there are a few methods they share with all other OsidObjects defined by
the specification

	OsidObject.display_name
	Gets the preferred display name associated with this instance of this OSID object appropriate for display to the user.

	OsidObject.description
	Gets the description associated with this instance of this OSID object.

	OsidObject.genus_type
	Gets the genus type of this object.

The display_name and description attributes work exactly like they did for
ObjectiveBanks and both return a Displaytext object that can be interrogated
for its text or the format, language, script of the text to be displayed. We’ll get
to genus_type in a little bit

Additionally Objectives objects can hold some information particular to the kind
of data that they manage:

	Objective.has_assessment()
	Tests if an assessment is associated with this objective.

	Objective.assessment
	Gets the assessment associated with this learning objective.

	Objective.assessment_id
	Gets the assessment Id associated with this learning objective.

	Objective.has_cognitive_process()
	Tests if this objective has a cognitive process type.

	Objective.cognitive_process
	Gets the grade associated with the cognitive process.

	Objective.cognitive_process_id
	Gets the grade Id associated with the cognitive process.

	Objective.has_knowledge_category()
	Tests if this objective has a knowledge dimension.

	Objective.knowledge_category
	Gets the grade associated with the knowledge dimension.

	Objective.knowledge_category_id
	Gets the grade Id associated with the knowledge dimension.

OSID Types

The OSID specification defines Types as a way to indicate additional agreements
between service consumers and service providers. A Type is similar to an Id but
includes other data for display and organization:

	Type.display_name
	Gets the full display name of this Type.

	Type.display_label
	Gets the shorter display label for this Type.

	Type.description
	Gets a description of this Type.

	Type.domain
	Gets the domain.

Types also include identification elements so as to uniquely identify one Type
from another:

	Type.authority
	Gets the authority of this Type.

	Type.namespace
	Gets the namespace of the identifier.

	Type.identifier
	Gets the identifier of this Type.

Consuming applications will often need to persist Types for future use.
Persisting a type reference requires persisting all three of these identification
elements.

For instance the MC3 service implementation supports two different types of
Objectives, which help differentiate between topic type objectives and
learning outcome type objectives. One way to store, say, the topic type for
future programmatic reference might be to put it in a dict:

OBJECTIVE_TOPIC_TYPE = {
 'authority': 'MIT-OEIT',
 'namespace': 'mc3-objective',
 'identifier': 'mc3.learning.topic'
 }

The OSIDs also specify functions for looking up types that are defined
and/or supported, and as one might imagine, there is TypeLookupSession specifically
designed for this purpose. This session, however, is not defined in the learning
service package, it is found in the type package, which therefore requires
a TypeManager be instantiated:

tm = runtime.get_service_manager('LEARNING', <proxy>)
...
if tm.supports_type_lookup():
 tls = tm.get_type_lookup_session()

The TypeLookupSession provides a number of ways to get types, two of which are
sufficient to get started:

	TypeLookupSession.types
	

	TypeLookupSession.get_type
	

For kicks, let’s print a list of all the Types supported by the implementation:

for typ in tls.types:
 print typ.display_label.text

For the MC3 implementation this should result in a very long list

Also, we can pass the dict we created earlier to the session to get the actual
Type object representing the three identification elements we persisted:

topic_type = tls.get_type(**OBJECTIVE_TOPIC_TYPE)
print topic_type.display_label.text + ': ' + topic_type.description.text

This should print the string 'Topic: Objective that represents a learning topic'

(More to come)

Assessment

	Summary

	Service Managers
	Assessment Manager

	Assessment Profile Methods

	Bank Lookup Methods

	Bank Admin Methods

	Bank Hierarchy Methods

	Bank Hierarchy Design Methods

	Bank
	Bank

	Assessment Methods

	Item Lookup Methods

	Item Query Methods

	Item Admin Methods

	Assessment Lookup Methods

	Assessment Query Methods

	Assessment Admin Methods

	Assessment Basic Authoring Methods

	Assessment Offered Lookup Methods

	Assessment Offered Query Methods

	Assessment Offered Admin Methods

	Assessment Taken Lookup Methods

	Assessment Taken Query Methods

	Assessment Taken Admin Methods

	Objects
	Question

	Question Form

	Question List

	Answer

	Answer Form

	Answer List

	Item

	Item Form

	Item List

	Assessment

	Assessment Form

	Assessment List

	Assessment Offered

	Assessment Offered Form

	Assessment Offered List

	Assessment Taken

	Assessment Taken Form

	Assessment Taken List

	Assessment Section

	Assessment Section List

	Bank Form

	Bank List

	Response List

	Queries
	Question Query

	Answer Query

	Item Query

	Assessment Query

	Assessment Offered Query

	Assessment Taken Query

	Bank Query

	Records
	Question Record

	Question Query Record

	Question Form Record

	Answer Record

	Answer Query Record

	Answer Form Record

	Item Record

	Item Query Record

	Item Form Record

	Assessment Record

	Assessment Query Record

	Assessment Form Record

	Assessment Offered Record

	Assessment Offered Query Record

	Assessment Offered Form Record

	Assessment Taken Record

	Assessment Taken Query Record

	Assessment Taken Form Record

	Assessment Section Record

	Bank Record

	Bank Query Record

	Bank Form Record

	Response Record

	Rules
	Response

Summary

Assessment Open Service Interface Definitions
assessment version 3.0.0

The Assessment OSID provides the means to create, access, and take
assessments. An Assessment may represent a quiz, survey, or other
evaluation that includes assessment Items. The OSID defines methods
to describe the flow of control and the relationships among the objects.
Assessment Items are extensible objects to capture various types of
questions, such as a multiple choice or an asset submission.

The Assessment service can br broken down into several distinct
services:

	Assessment Taking

	Assessment and Item authoring

	Accessing and managing banks of assessments and items

Each of these service areas are covered by different session and object
interfaces. The object interfaces describe both the structure of the
assessment and follow an assessment management workflow of first
defining assessment items and then authoring assessments based on those
items. They are:

	Item : a question and answer pair

	Response: a response to an Item question

	Assessment : a set of Items

	AssessmentSection: A grouped set of Items

	AssessmentOffering: An Assessment available for taking

	AssessmentTaken: An AssessmentOffering that has been
completed or in progress

Taking Assessments

The AssessmentSession is used to take an assessment. It captures
various ways an assessment can be taken which may include time
constraints, the ability to suspend and resume, and the availability of
an answer.

Taking an Assessment involves first navigating through
AssessmentSections. An AssessmentSection is an advanced
authoring construct used to both visually divide an Assessment and
impose additional constraints. Basic assessments are assumed to always
have one AssessmentSection even if not explicitly created.

Authoring

A basic authoring session is available in this package to map Items
to Assessments. More sophisticated authoring using
AssessmentParts and sequencing is available in the Assessment
Authoring OSID.

Bank Cataloging

Assessments, AssessmentsOffered, AssessmentsTaken, and
Items may be organized into federateable catalogs called Banks .

Sub Packages

The Assessment OSID includes an Assessment Authoring OSID for more
advanced authoring and sequencing options.

 Assessment Open Service Interface Definitions
assessment version 3.0.0

The Assessment OSID provides the means to create, access, and take
assessments. An Assessment may represent a quiz, survey, or other
evaluation that includes assessment Items. The OSID defines methods
to describe the flow of control and the relationships among the objects.
Assessment Items are extensible objects to capture various types of
questions, such as a multiple choice or an asset submission.

The Assessment service can br broken down into several distinct
services:

	Assessment Taking

	Assessment and Item authoring

	Accessing and managing banks of assessments and items

Each of these service areas are covered by different session and object
interfaces. The object interfaces describe both the structure of the
assessment and follow an assessment management workflow of first
defining assessment items and then authoring assessments based on those
items. They are:

	Item : a question and answer pair

	Response: a response to an Item question

	Assessment : a set of Items

	AssessmentSection: A grouped set of Items

	AssessmentOffering: An Assessment available for taking

	AssessmentTaken: An AssessmentOffering that has been
completed or in progress

Taking Assessments

The AssessmentSession is used to take an assessment. It captures
various ways an assessment can be taken which may include time
constraints, the ability to suspend and resume, and the availability of
an answer.

Taking an Assessment involves first navigating through
AssessmentSections. An AssessmentSection is an advanced
authoring construct used to both visually divide an Assessment and
impose additional constraints. Basic assessments are assumed to always
have one AssessmentSection even if not explicitly created.

Authoring

A basic authoring session is available in this package to map Items
to Assessments. More sophisticated authoring using
AssessmentParts and sequencing is available in the Assessment
Authoring OSID.

Bank Cataloging

Assessments, AssessmentsOffered, AssessmentsTaken, and
Items may be organized into federateable catalogs called Banks .

Sub Packages

The Assessment OSID includes an Assessment Authoring OSID for more
advanced authoring and sequencing options.

Service Managers

Assessment Manager

	
class dlkit.services.assessment.AssessmentManager

	Bases: dlkit.osid.managers.OsidManager, dlkit.osid.sessions.OsidSession, dlkit.services.assessment.AssessmentProfile

	
assessment_authoring_manager

	Gets an AssessmentAuthoringManager.

	Returns:	an AssessmentAuthoringManager

	Return type:	osid.assessment.authoring.AssessmentAuthoringManager

	Raise:	OperationFailed – unable to complete request

	Raise:	Unimplemented – supports_assessment_authoring() is false

	
assessment_batch_manager

	Gets an AssessmentBatchManager.

	Returns:	an AssessmentBatchManager

	Return type:	osid.assessment.batch.AssessmentBatchManager

	Raise:	OperationFailed – unable to complete request

	Raise:	Unimplemented – supports_assessment_batch() is false

Assessment Profile Methods

	
AssessmentManager.supports_assessment()

	Tests for the availability of a assessment service which is the service for taking and examining assessments taken.

	Returns:	true if assessment is supported, false otherwise

	Return type:	boolean

	
AssessmentManager.supports_item_lookup()

	Tests if an item lookup service is supported.

	Returns:	true if item lookup is supported, false otherwise

	Return type:	boolean

	
AssessmentManager.supports_item_query()

	Tests if an item query service is supported.

	Returns:	true if item query is supported, false otherwise

	Return type:	boolean

	
AssessmentManager.supports_item_admin()

	Tests if an item administrative service is supported.

	Returns:	true if item admin is supported, false otherwise

	Return type:	boolean

	
AssessmentManager.supports_assessment_lookup()

	Tests if an assessment lookup service is supported.
An assessment lookup service defines methods to access
assessments.

	Returns:	true if assessment lookup is supported, false otherwise

	Return type:	boolean

	
AssessmentManager.supports_assessment_query()

	Tests if an assessment query service is supported.

	Returns:	true if assessment query is supported, false otherwise

	Return type:	boolean

	
AssessmentManager.supports_assessment_admin()

	Tests if an assessment administrative service is supported.

	Returns:	true if assessment admin is supported, false otherwise

	Return type:	boolean

	
AssessmentManager.supports_assessment_basic_authoring()

	Tests if an assessment basic authoring session is available.

	Returns:	true if assessment basic authoring is supported, false otherwise

	Return type:	boolean

	
AssessmentManager.supports_assessment_offered_lookup()

	Tests if an assessment offered lookup service is supported.

	Returns:	true if assessment offered lookup is supported, false otherwise

	Return type:	boolean

	
AssessmentManager.supports_assessment_offered_query()

	Tests if an assessment offered query service is supported.

	Returns:	true if assessment offered query is supported, false otherwise

	Return type:	boolean

	
AssessmentManager.supports_assessment_offered_admin()

	Tests if an assessment offered administrative service is supported.

	Returns:	true if assessment offered admin is supported, false otherwise

	Return type:	boolean

	
AssessmentManager.supports_assessment_taken_lookup()

	Tests if an assessment taken lookup service is supported.

	Returns:	true if assessment taken lookup is supported, false otherwise

	Return type:	boolean

	
AssessmentManager.supports_assessment_taken_query()

	Tests if an assessment taken query service is supported.

	Returns:	true if assessment taken query is supported, false otherwise

	Return type:	boolean

	
AssessmentManager.supports_assessment_taken_admin()

	Tests if an assessment taken administrative service is supported which is used to instantiate an assessment offered.

	Returns:	true if assessment taken admin is supported, false otherwise

	Return type:	boolean

	
AssessmentManager.supports_bank_lookup()

	Tests if a bank lookup service is supported.
A bank lookup service defines methods to access assessment
banks.

	Returns:	true if bank lookup is supported, false otherwise

	Return type:	boolean

	
AssessmentManager.supports_bank_admin()

	Tests if a banlk administrative service is supported.

	Returns:	true if bank admin is supported, false otherwise

	Return type:	boolean

	
AssessmentManager.supports_bank_hierarchy()

	Tests if a bank hierarchy traversal is supported.

	Returns:	true if a bank hierarchy traversal is supported, false otherwise

	Return type:	boolean

	
AssessmentManager.supports_bank_hierarchy_design()

	Tests if bank hierarchy design is supported.

	Returns:	true if a bank hierarchy design is supported, false otherwise

	Return type:	boolean

	
AssessmentManager.item_record_types

	Gets the supported Item record types.

	Returns:	a list containing the supported Item record types

	Return type:	osid.type.TypeList

	
AssessmentManager.item_search_record_types

	Gets the supported Item search record types.

	Returns:	a list containing the supported Item search record types

	Return type:	osid.type.TypeList

	
AssessmentManager.assessment_record_types

	Gets the supported Assessment record types.

	Returns:	a list containing the supported Assessment record types

	Return type:	osid.type.TypeList

	
AssessmentManager.assessment_search_record_types

	Gets the supported Assessment search record types.

	Returns:	a list containing the supported assessment search record types

	Return type:	osid.type.TypeList

	
AssessmentManager.assessment_offered_record_types

	Gets the supported AssessmentOffered record types.

	Returns:	a list containing the supported AssessmentOffered record types

	Return type:	osid.type.TypeList

	
AssessmentManager.assessment_offered_search_record_types

	Gets the supported AssessmentOffered search record types.

	Returns:	a list containing the supported AssessmentOffered search record types

	Return type:	osid.type.TypeList

	
AssessmentManager.assessment_taken_record_types

	Gets the supported AssessmentTaken record types.

	Returns:	a list containing the supported AssessmentTaken record types

	Return type:	osid.type.TypeList

	
AssessmentManager.assessment_taken_search_record_types

	Gets the supported AssessmentTaken search record types.

	Returns:	a list containing the supported AssessmentTaken search record types

	Return type:	osid.type.TypeList

	
AssessmentManager.assessment_section_record_types

	Gets the supported AssessmentSection record types.

	Returns:	a list containing the supported AssessmentSection record types

	Return type:	osid.type.TypeList

	
AssessmentManager.bank_record_types

	Gets the supported Bank record types.

	Returns:	a list containing the supported Bank record types

	Return type:	osid.type.TypeList

	
AssessmentManager.bank_search_record_types

	Gets the supported bank search record types.

	Returns:	a list containing the supported Bank search record types

	Return type:	osid.type.TypeList

Bank Lookup Methods

	
AssessmentManager.can_lookup_banks()

	Tests if this user can perform Bank lookups.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an application that may opt not to offer lookup
operations to unauthorized users.

	Returns:	false if lookup methods are not authorized, true otherwise

	Return type:	boolean

	
AssessmentManager.use_comparative_bank_view()

	The returns from the lookup methods may omit or translate elements based on this session, such as assessment, and not result in an error.
This view is used when greater interoperability is desired at
the expense of precision.

	
AssessmentManager.use_plenary_bank_view()

	A complete view of the Bank returns is desired.
Methods will return what is requested or result in an error.
This view is used when greater precision is desired at the
expense of interoperability.

	
AssessmentManager.get_banks_by_ids(bank_ids)

	Gets a BankList corresponding to the given IdList.
In plenary mode, the returned list contains all of the banks
specified in the Id list, in the order of the list,
including duplicates, or an error results if an Id in the
supplied list is not found or inaccessible. Otherwise,
inaccessible Bank objects may be omitted from the list and
may present the elements in any order including returning a
unique set.

	Parameters:	bank_ids (osid.id.IdList) – the list of Ids to retrieve

	Returns:	the returned Bank list

	Return type:	osid.assessment.BankList

	Raise:	NotFound – an Id was not found

	Raise:	NullArgument – bank_ids is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
AssessmentManager.get_banks_by_genus_type(bank_genus_type)

	Gets a BankList corresponding to the given bank genus Type which does not include banks of types derived from the specified Type.
In plenary mode, the returned list contains all known banks or
an error results. Otherwise, the returned list may contain only
those banks that are accessible through this session.

	Parameters:	bank_genus_type (osid.type.Type) – a bank genus type

	Returns:	the returned Bank list

	Return type:	osid.assessment.BankList

	Raise:	NullArgument – bank_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
AssessmentManager.get_banks_by_parent_genus_type(bank_genus_type)

	Gets a BankList corresponding to the given bank genus Type and include any additional banks with genus types derived from the specified Type.
In plenary mode, the returned list contains all known banks or
an error results. Otherwise, the returned list may contain only
those banks that are accessible through this session.

	Parameters:	bank_genus_type (osid.type.Type) – a bank genus type

	Returns:	the returned Bank list

	Return type:	osid.assessment.BankList

	Raise:	NullArgument – bank_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
AssessmentManager.get_banks_by_record_type(bank_record_type)

	Gets a BankList containing the given bank record Type.
In plenary mode, the returned list contains all known banks or
an error results. Otherwise, the returned list may contain only
those banks that are accessible through this session.

	Parameters:	bank_record_type (osid.type.Type) – a bank record type

	Returns:	the returned Bank list

	Return type:	osid.assessment.BankList

	Raise:	NullArgument – bank_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
AssessmentManager.get_banks_by_provider(resource_id)

	Gets a BankList from the given provider ````.
In plenary mode, the returned list contains all known banks or
an error results. Otherwise, the returned list may contain only
those banks that are accessible through this session.

	Parameters:	resource_id (osid.id.Id) – a resource Id

	Returns:	the returned Bank list

	Return type:	osid.assessment.BankList

	Raise:	NullArgument – resource_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
AssessmentManager.banks

	Gets all Banks.
In plenary mode, the returned list contains all known banks or
an error results. Otherwise, the returned list may contain only
those banks that are accessible through this session.

	Returns:	a BankList

	Return type:	osid.assessment.BankList

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

Bank Admin Methods

	
AssessmentManager.can_create_banks()

	Tests if this user can create Banks.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known creating a Bank
will result in a PermissionDenied. This is intended as a
hint to an application that may not wish to offer create
operations to unauthorized users.

	Returns:	false if Bank creation is not authorized, true otherwise

	Return type:	boolean

	
AssessmentManager.can_create_bank_with_record_types(bank_record_types)

	Tests if this user can create a single Bank using the desired record types.
While AssessmentManager.getBankRecordTypes() can be used to
examine which records are supported, this method tests which
record(s) are required for creating a specific Bank.
Providing an empty array tests if a Bank can be created with
no records.

	Parameters:	bank_record_types (osid.type.Type[]) – array of bank record types

	Returns:	true if Bank creation using the specified Types is supported, false otherwise

	Return type:	boolean

	Raise:	NullArgument – bank_record_types is null

	
AssessmentManager.get_bank_form_for_create(bank_record_types)

	Gets the bank form for creating new banks.
A new form should be requested for each create transaction.

	Parameters:	bank_record_types (osid.type.Type[]) – array of bank record types to be included in the create operation or an empty list if none

	Returns:	the bank form

	Return type:	osid.assessment.BankForm

	Raise:	NullArgument – bank_record_types is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – unable to get form for requested record types

	
AssessmentManager.create_bank(bank_form)

	Creates a new Bank.

	Parameters:	bank_form (osid.assessment.BankForm) – the form for this Bank

	Returns:	the new Bank

	Return type:	osid.assessment.Bank

	Raise:	IllegalState – bank_form already used in a create transaction

	Raise:	InvalidArgument – one or more of the form elements is invalid

	Raise:	NullArgument – bank_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – bank_form did not originate from get_bank_form_for_create()

	
AssessmentManager.can_update_banks()

	Tests if this user can update Banks.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known updating a Bank
will result in a PermissionDenied. This is intended as a
hint to an application that may not wish to offer update
operations to unauthorized users.

	Returns:	false if Bank modification is not authorized, true otherwise

	Return type:	boolean

	
AssessmentManager.get_bank_form_for_update(bank_id)

	Gets the bank form for updating an existing bank.
A new bank form should be requested for each update transaction.

	Parameters:	bank_id (osid.id.Id) – the Id of the Bank

	Returns:	the bank form

	Return type:	osid.assessment.BankForm

	Raise:	NotFound – bank_id is not found

	Raise:	NullArgument – bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
AssessmentManager.update_bank(bank_form)

	Updates an existing bank.

	Parameters:	bank_form (osid.assessment.BankForm) – the form containing the elements to be updated

	Raise:	IllegalState – bank_form already used in an update transaction

	Raise:	InvalidArgument – the form contains an invalid value

	Raise:	NullArgument – bank_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – bank_form did not originate from get_bank_form_for_update()

	
AssessmentManager.can_delete_banks()

	Tests if this user can delete banks.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known deleting a Bank
will result in a PermissionDenied. This is intended as a
hint to an application that may not wish to offer delete
operations to unauthorized users.

	Returns:	false if Bank deletion is not authorized, true otherwise

	Return type:	boolean

	
AssessmentManager.delete_bank(bank_id)

	Deletes a Bank.

	Parameters:	bank_id (osid.id.Id) – the Id of the Bank to remove

	Raise:	NotFound – bank_id not found

	Raise:	NullArgument – bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
AssessmentManager.can_manage_bank_aliases()

	Tests if this user can manage Id aliases for Banks.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known changing an alias
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer alias
operations to an unauthorized user.

	Returns:	false if Bank aliasing is not authorized, true otherwise

	Return type:	boolean

	
AssessmentManager.alias_bank(bank_id, alias_id)

	Adds an Id to a Bank for the purpose of creating compatibility.
The primary Id of the Bank is determined by the
provider. The new Id is an alias to the primary Id. If
the alias is a pointer to another bank, it is reassigned to the
given bank Id.

	Parameters:	
	bank_id (osid.id.Id) – the Id of a Bank

	alias_id (osid.id.Id) – the alias Id

	Raise:	AlreadyExists – alias_id is in use as a primary Id

	Raise:	NotFound – bank_id not found

	Raise:	NullArgument – bank_id or alias_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

Bank Hierarchy Methods

	
AssessmentManager.bank_hierarchy_id

	Gets the hierarchy Id associated with this session.

	Returns:	the hierarchy Id associated with this session

	Return type:	osid.id.Id

	
AssessmentManager.bank_hierarchy

	Gets the hierarchy associated with this session.

	Returns:	the hierarchy associated with this session

	Return type:	osid.hierarchy.Hierarchy

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – assessment failure

	
AssessmentManager.can_access_bank_hierarchy()

	Tests if this user can perform hierarchy queries.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an application that may opt not to offer lookup
operations.

	Returns:	false if hierarchy traversal methods are not authorized, true otherwise

	Return type:	boolean

	
AssessmentManager.use_comparative_bank_view()

	The returns from the lookup methods may omit or translate elements based on this session, such as assessment, and not result in an error.
This view is used when greater interoperability is desired at
the expense of precision.

	
AssessmentManager.use_plenary_bank_view()

	A complete view of the Bank returns is desired.
Methods will return what is requested or result in an error.
This view is used when greater precision is desired at the
expense of interoperability.

	
AssessmentManager.root_bank_ids

	Gets the root bank Ids in this hierarchy.

	Returns:	the root bank Ids

	Return type:	osid.id.IdList

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
AssessmentManager.root_banks

	Gets the root banks in this bank hierarchy.

	Returns:	the root banks

	Return type:	osid.assessment.BankList

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
AssessmentManager.has_parent_banks(bank_id)

	Tests if the Bank has any parents.

	Parameters:	bank_id (osid.id.Id) – a bank Id

	Returns:	true if the bank has parents, false otherwise

	Return type:	boolean

	Raise:	NotFound – bank_id is not found

	Raise:	NullArgument – bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
AssessmentManager.is_parent_of_bank(id_, bank_id)

	Tests if an Id is a direct parent of a bank.

	Parameters:	
	id (osid.id.Id) – an Id

	bank_id (osid.id.Id) – the Id of a bank

	Returns:	true if this id is a parent of bank_id, false otherwise

	Return type:	boolean

	Raise:	NotFound – bank_id is not found

	Raise:	NullArgument – id or bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
AssessmentManager.get_parent_bank_ids(bank_id)

	Gets the parent Ids of the given bank.

	Parameters:	bank_id (osid.id.Id) – a bank Id

	Returns:	the parent Ids of the bank

	Return type:	osid.id.IdList

	Raise:	NotFound – bank_id is not found

	Raise:	NullArgument – bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
AssessmentManager.get_parent_banks(bank_id)

	Gets the parents of the given bank.

	Parameters:	bank_id (osid.id.Id) – a bank Id

	Returns:	the parents of the bank

	Return type:	osid.assessment.BankList

	Raise:	NotFound – bank_id is not found

	Raise:	NullArgument – bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
AssessmentManager.is_ancestor_of_bank(id_, bank_id)

	Tests if an Id is an ancestor of a bank.

	Parameters:	
	id (osid.id.Id) – an Id

	bank_id (osid.id.Id) – the Id of a bank

	Returns:	true if this id is an ancestor of bank_id, false otherwise

	Return type:	boolean

	Raise:	NotFound – bank_id is not found

	Raise:	NullArgument – bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
AssessmentManager.has_child_banks(bank_id)

	Tests if a bank has any children.

	Parameters:	bank_id (osid.id.Id) – a bank_id

	Returns:	true if the bank_id has children, false otherwise

	Return type:	boolean

	Raise:	NotFound – bank_id is not found

	Raise:	NullArgument – bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
AssessmentManager.is_child_of_bank(id_, bank_id)

	Tests if a bank is a direct child of another.

	Parameters:	
	id (osid.id.Id) – an Id

	bank_id (osid.id.Id) – the Id of a bank

	Returns:	true if the id is a child of bank_id, false otherwise

	Return type:	boolean

	Raise:	NotFound – bank_id not found

	Raise:	NullArgument – bank_id or id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
AssessmentManager.get_child_bank_ids(bank_id)

	Gets the child Ids of the given bank.

	Parameters:	bank_id (osid.id.Id) – the Id to query

	Returns:	the children of the bank

	Return type:	osid.id.IdList

	Raise:	NotFound – bank_id is not found

	Raise:	NullArgument – bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
AssessmentManager.get_child_banks(bank_id)

	Gets the children of the given bank.

	Parameters:	bank_id (osid.id.Id) – the Id to query

	Returns:	the children of the bank

	Return type:	osid.assessment.BankList

	Raise:	NotFound – bank_id is not found

	Raise:	NullArgument – bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
AssessmentManager.is_descendant_of_bank(id_, bank_id)

	Tests if an Id is a descendant of a bank.

	Parameters:	
	id (osid.id.Id) – an Id

	bank_id (osid.id.Id) – the Id of a bank

	Returns:	true if the id is a descendant of the bank_id, false otherwise

	Return type:	boolean

	Raise:	NotFound – bank_id not found

	Raise:	NullArgument – bank_id or id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
AssessmentManager.get_bank_node_ids(bank_id, ancestor_levels, descendant_levels, include_siblings)

	Gets a portion of the hierarchy for the given bank.

	Parameters:	
	bank_id (osid.id.Id) – the Id to query

	ancestor_levels (cardinal) – the maximum number of ancestor levels to include. A value of 0 returns no parents in the node.

	descendant_levels (cardinal) – the maximum number of descendant levels to include. A value of 0 returns no children in the node.

	include_siblings (boolean) – true to include the siblings of the given node, false to omit the siblings

	Returns:	a bank node

	Return type:	osid.hierarchy.Node

	Raise:	NotFound – bank_id is not found

	Raise:	NullArgument – bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
AssessmentManager.get_bank_nodes(bank_id, ancestor_levels, descendant_levels, include_siblings)

	Gets a portion of the hierarchy for the given bank.

	Parameters:	
	bank_id (osid.id.Id) – the Id to query

	ancestor_levels (cardinal) – the maximum number of ancestor levels to include. A value of 0 returns no parents in the node.

	descendant_levels (cardinal) – the maximum number of descendant levels to include. A value of 0 returns no children in the node.

	include_siblings (boolean) – true to include the siblings of the given node, false to omit the siblings

	Returns:	a bank node

	Return type:	osid.assessment.BankNode

	Raise:	NotFound – bank_id is not found

	Raise:	NullArgument – bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Bank Hierarchy Design Methods

	
AssessmentManager.bank_hierarchy_id

	Gets the hierarchy Id associated with this session.

	Returns:	the hierarchy Id associated with this session

	Return type:	osid.id.Id

	
AssessmentManager.bank_hierarchy

	Gets the hierarchy associated with this session.

	Returns:	the hierarchy associated with this session

	Return type:	osid.hierarchy.Hierarchy

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – assessment failure

	
AssessmentManager.can_modify_bank_hierarchy()

	Tests if this user can change the hierarchy.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known performing any update
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer these
operations to an unauthorized user.

	Returns:	false if changing this hierarchy is not authorized, true otherwise

	Return type:	boolean

	
AssessmentManager.add_root_bank(bank_id)

	Adds a root bank.

	Parameters:	bank_id (osid.id.Id) – the Id of a bank

	Raise:	AlreadyExists – bank_id is already in hierarchy

	Raise:	NotFound – bank_id not found

	Raise:	NullArgument – bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
AssessmentManager.remove_root_bank(bank_id)

	Removes a root bank from this hierarchy.

	Parameters:	bank_id (osid.id.Id) – the Id of a bank

	Raise:	NotFound – bank_id not a parent of child_id

	Raise:	NullArgument – bank_id or child_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
AssessmentManager.add_child_bank(bank_id, child_id)

	Adds a child to a bank.

	Parameters:	
	bank_id (osid.id.Id) – the Id of a bank

	child_id (osid.id.Id) – the Id of the new child

	Raise:	AlreadyExists – bank_id is already a parent of child_id

	Raise:	NotFound – bank_id or child_id not found

	Raise:	NullArgument – bank_id or child_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
AssessmentManager.remove_child_bank(bank_id, child_id)

	Removes a child from a bank.

	Parameters:	
	bank_id (osid.id.Id) – the Id of a bank

	child_id (osid.id.Id) – the Id of the new child

	Raise:	NotFound – bank_id not parent of child_id

	Raise:	NullArgument – bank_id or child_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
AssessmentManager.remove_child_banks(bank_id)

	Removes all children from a bank.

	Parameters:	bank_id (osid.id.Id) – the Id of a bank

	Raise:	NotFound – bank_id is not in hierarchy

	Raise:	NullArgument – bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

Bank

Bank

	
class dlkit.services.assessment.Bank

	Bases: dlkit.osid.objects.OsidCatalog, dlkit.osid.sessions.OsidSession

	
get_bank_record(bank_record_type)

	Gets the bank record corresponding to the given Bank record Type.
This method is used to retrieve an object implementing the
requested record. The bank_record_type may be the Type
returned in get_record_types() or any of its parents in a
Type hierarchy where has_record_type(bank_record_type)
is true .

	Parameters:	bank_record_type (osid.type.Type) – a bank record type

	Returns:	the bank record

	Return type:	osid.assessment.records.BankRecord

	Raise:	NullArgument – bank_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(bank_record_type) is false

Assessment Methods

	
Bank.can_take_assessments()

	Tests if this user can take this assessment section.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an application that may opt not to offer assessment
operations to unauthorized users.

	Returns:	false if assessment methods are not authorized, true otherwise

	Return type:	boolean

	
Bank.has_assessment_begun(assessment_taken_id)

	Tests if this assessment has started.
An assessment begins from the designated start time if a start
time is defined. If no start time is defined the assessment may
begin at any time. Assessment sections cannot be accessed if the
return for this method is false.

	Parameters:	assessment_taken_id (osid.id.Id) – Id of the AssessmentTaken

	Returns:	true if this assessment has begun, false otherwise

	Return type:	boolean

	Raise:	NotFound – assessment_taken_id is not found

	Raise:	NullArgument – assessment_taken_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.is_assessment_over(assessment_taken_id)

	Tests if this assessment is over.
An assessment is over if finished_assessment() is invoked or
the designated finish time has expired.

	Parameters:	assessment_taken_id (osid.id.Id) – Id of the AssessmentTaken

	Returns:	true if this assessment is over, false otherwise

	Return type:	boolean

	Raise:	NotFound – assessment_taken_id is not found

	Raise:	NullArgument – assessment_taken_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.requires_synchronous_sections(assessment_taken_id)

	Tests if synchronous sections are required.
This method should be checked to determine if all sections are
available when requested, or the next sections becomes available
only after the previous section is complete.

There are two methods for retrieving sections. One is using the
built-in hasNextSection() and getNextSection() methods. In
synchronous mode, hasNextSection() is false until the current
section is completed. In asynchronous mode,
has_next_section() returns true until the end of the
assessment.

AssessmentSections may also be accessed via an
AssessmentSectionList. If syncronous sections are required,
AssessmentSectionList.available() == 0 and
AssessmentSectionList.getNextQuestion() blocks until the
section is complete. AssessmentSectionList.hasNext() is
always true until the end of the assessment is reached.

	Parameters:	assessment_taken_id (osid.id.Id) – Id of the AssessmentTaken

	Returns:	true if this synchronous sections are required, false otherwise

	Return type:	boolean

	Raise:	NotFound – assessment_taken_id is not found

	Raise:	NullArgument – assessment_taken_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_first_assessment_section(assessment_taken_id)

	Gets the first assessment section in this assesment.
All assessments have at least one AssessmentSection.

	Parameters:	assessment_taken_id (osid.id.Id) – Id of the AssessmentTaken

	Returns:	the first assessment section

	Return type:	osid.assessment.AssessmentSection

	Raise:	IllegalState – has_assessment_begun() is false

	Raise:	NotFound – assessment_taken_id is not found

	Raise:	NullArgument – assessment_taken_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.has_next_assessment_section(assessment_section_id)

	Tests if there is a next assessment section in the assessment following the given assessment section Id.

	Parameters:	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	Returns:	true if there is a next section, false otherwise

	Return type:	boolean

	Raise:	IllegalState – has_assessment_begun() is false

	Raise:	NotFound – assessment_taken_id is not found

	Raise:	NullArgument – assessment_taken_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_next_assessment_section(assessment_section_id)

	Gets the next assessemnt section following the given assesment section.

	Parameters:	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	Returns:	the next section

	Return type:	osid.assessment.AssessmentSection

	Raise:	IllegalState – has_next_assessment_section() is false

	Raise:	NotFound – assessment_section_id is not found

	Raise:	NullArgument – assessment_section_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.has_previous_assessment_section(assessment_section_id)

	Tests if there is a previous assessment section in the assessment following the given assessment section Id.

	Parameters:	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	Returns:	true if there is a previous assessment section, false otherwise

	Return type:	boolean

	Raise:	IllegalState – has_assessment_begun() is false

	Raise:	NotFound – assessment_section_id is not found

	Raise:	NullArgument – assessment_section_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_previous_assessment_section(assessment_section_id)

	Gets the next assessemnt section following the given assesment section.

	Parameters:	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	Returns:	the previous assessment section

	Return type:	osid.assessment.AssessmentSection

	Raise:	IllegalState – has_next_assessment_section() is false

	Raise:	NotFound – assessment_section_id is not found

	Raise:	NullArgument – assessment_section_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessment_section(assessment_section_id)

	Gets an assessemnts section by Id.

	Parameters:	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	Returns:	the assessment section

	Return type:	osid.assessment.AssessmentSection

	Raise:	IllegalState – has_assessment_begun() is false

	Raise:	NotFound – assessment_section_id is not found

	Raise:	NullArgument – assessment_section_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessment_sections(assessment_taken_id)

	Gets the assessment sections of this assessment.

	Parameters:	assessment_taken_id (osid.id.Id) – Id of the AssessmentTaken

	Returns:	the list of assessment sections

	Return type:	osid.assessment.AssessmentSectionList

	Raise:	IllegalState – has_assessment_begun() is false

	Raise:	NotFound – assessment_taken_id is not found

	Raise:	NullArgument – assessment_taken_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.is_assessment_section_complete(assessment_section_id)

	Tests if the all responses have been submitted to this assessment section.
If is_assessment_section_complete() is false, then
get_unanswered_questions() may return a list of questions
that can be submitted.

	Parameters:	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	Returns:	true if this assessment section is complete, false otherwise

	Return type:	boolean

	Raise:	IllegalState – is_assessment_over() is true

	Raise:	NotFound – assessment_section_id is not found

	Raise:	NullArgument – assessment_section_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Bank.get_incomplete_assessment_sections(assessment_taken_id)

	Gets the incomplete assessment sections of this assessment.

	Parameters:	assessment_taken_id (osid.id.Id) – Id of the AssessmentTaken

	Returns:	the list of incomplete assessment sections

	Return type:	osid.assessment.AssessmentSectionList

	Raise:	IllegalState – has_assessment_begun() is false

	Raise:	NotFound – assessment_taken_id is not found

	Raise:	NullArgument – assessment_taken_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.has_assessment_section_begun(assessment_section_id)

	Tests if this assessment section has started.
A section begins from the designated start time if a start time
is defined. If no start time is defined the section may begin at
any time. Assessment items cannot be accessed or submitted if
the return for this method is false.

	Parameters:	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	Returns:	true if this assessment section has begun, false otherwise

	Return type:	boolean

	Raise:	IllegalState – has_assessment_begun() is false or is_assessment_over() is true

	Raise:	NotFound – assessment_section_id is not found

	Raise:	NullArgument – assessment_section_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Bank.is_assessment_section_over(assessment_section_id)

	Tests if this assessment section is over.
An assessment section is over if new or updated responses can
not be submitted such as the designated finish time has expired.

	Parameters:	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	Returns:	true if this assessment is over, false otherwise

	Return type:	boolean

	Raise:	IllegalState – has_assessmen_sectiont_begun() is false or is_assessment_section_over() is true

	Raise:	NotFound – assessment_section_id is not found

	Raise:	NullArgument – assessment_section_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Bank.requires_synchronous_responses(assessment_section_id)

	Tests if synchronous responses are required in this assessment section.
This method should be checked to determine if all items are
available when requested, or the next item becomes available
only after the response to the current item is submitted.

There are two methods for retrieving questions. One is using the
built-in has_next_question() and get_next_question()
methods. In synchronous mode, has_next_question() is
false until the response for the current question is
submitted. In asynchronous mode, has_next_question() returns
true until the end of the assessment.

Questions may also be accessed via a QuestionList. If
syncronous responses are required, QuestionList.available() ==
0 and QuestionList.getNextQuestion() blocks until the
response is submitted. QuestionList.hasNext() is always true
until the end of the assessment is reached.

	Parameters:	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	Returns:	true if this synchronous responses are required, false otherwise

	Return type:	boolean

	Raise:	IllegalState – has_assessment_begun() is false or is_assessment_over() is true

	Raise:	NotFound – assessment_section_id is not found

	Raise:	NullArgument – assessment_section_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Bank.get_first_question(assessment_section_id)

	Gets the first question in this assesment section.

	Parameters:	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	Returns:	the first question

	Return type:	osid.assessment.Question

	Raise:	IllegalState – has_assessment_section_begun() is false or is_assessment_section_over() is true

	Raise:	NotFound – assessment_section_id is not found

	Raise:	NullArgument – assessment_section_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.has_next_question(assessment_section_id, item_id)

	Tests if there is a next question following the given question Id.

	Parameters:	
	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	item_id (osid.id.Id) – Id of the Item

	Returns:	true if there is a next question, false otherwise

	Return type:	boolean

	Raise:	IllegalState – has_assessment_section_begun() is false or is_assessment_section_over() is true

	Raise:	NotFound – assessment_section_id or item_id is not found, or item_id not part of assessment_section_id

	Raise:	NullArgument – assessment_section_id or item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_next_question(assessment_section_id, item_id)

	Gets the next question in this assesment section.

	Parameters:	
	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	item_id (osid.id.Id) – Id of the Item

	Returns:	the next question

	Return type:	osid.assessment.Question

	Raise:	IllegalState – has_next_question() is false

	Raise:	NotFound – assessment_section_id or item_id is not found, or item_id not part of assessment_section_id

	Raise:	NullArgument – assessment_section_id or item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.has_previous_question(assessment_section_id, item_id)

	Tests if there is a previous question preceeding the given question Id.

	Parameters:	
	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	item_id (osid.id.Id) – Id of the Item

	Returns:	true if there is a previous question, false otherwise

	Return type:	boolean

	Raise:	IllegalState – has_assessment_section_begun() is false or is_assessment_section_over() is true

	Raise:	NotFound – assessment_section_id or item_id is not found, or item_id not part of assessment_section_id

	Raise:	NullArgument – assessment_section_id or item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_previous_question(assessment_section_id, item_id)

	Gets the previous question in this assesment section.

	Parameters:	
	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	item_id (osid.id.Id) – Id of the Item

	Returns:	the previous question

	Return type:	osid.assessment.Question

	Raise:	IllegalState – has_previous_question() is false

	Raise:	NotFound – assessment_section_id or item_id is not found, or item_id not part of assessment_section_id

	Raise:	NullArgument – assessment_section_id or item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_question(assessment_section_id, item_id)

	Gets the Question specified by its Id.

	Parameters:	
	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	item_id (osid.id.Id) – Id of the Item

	Returns:	the returned Question

	Return type:	osid.assessment.Question

	Raise:	IllegalState – has_assessment_section_begun() is false or is_assessment_section_over() is true

	Raise:	NotFound – assessment_section_id or item_id is not found, or item_id not part of assessment_section_id

	Raise:	NullArgument – assessment_section_id or item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_questions(assessment_section_id)

	Gets the questions of this assessment section.

	Parameters:	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	Returns:	the list of assessment questions

	Return type:	osid.assessment.QuestionList

	Raise:	IllegalState – has_assessment_section_begun() is false or is_assessment_section_over() is true

	Raise:	NotFound – assessment_section_id is not found

	Raise:	NullArgument – assessment_section_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_response_form(assessment_section_id, item_id)

	Gets the response form for submitting an answer.

	Parameters:	
	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	item_id (osid.id.Id) – Id of the Item

	Returns:	an answer form

	Return type:	osid.assessment.AnswerForm

	Raise:	IllegalState – has_assessment_section_begun() is false or is_assessment_section_over() is true

	Raise:	NotFound – assessment_section_id or item_id is not found, or item_id not part of assessment_section_id

	Raise:	NullArgument – assessment_section_id or item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.submit_response(assessment_section_id, item_id, answer_form)

	Submits an answer to an item.

	Parameters:	
	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	item_id (osid.id.Id) – Id of the Item

	answer_form (osid.assessment.AnswerForm) – the response

	Raise:	IllegalState – has_assessment_section_begun() is false or is_assessment_section_over() is true

	Raise:	InvalidArgument – one or more of the elements in the form is invalid

	Raise:	NotFound – assessment_section_id or item_id is not found, or item_id not part of assessment_section_id

	Raise:	NullArgument – assessment_section_id, item_id, or answer_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – answer_form is not of this service

	
Bank.skip_item(assessment_section_id, item_id)

	Skips an item.

	Parameters:	
	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	item_id (osid.id.Id) – Id of the Item

	Raise:	IllegalState – has_assessment_section_begun() is false or is_assessment_section_over() is true

	Raise:	NotFound – assessment_section_id or item_id is not found, or item_id not part of assessment_section_id

	Raise:	NullArgument – assessment_section_id or item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Bank.is_question_answered(assessment_section_id, item_id)

	Tests if the given item has a response.

	Parameters:	
	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	item_id (osid.id.Id) – Id of the Item

	Returns:	true if this item has a response, false otherwise

	Return type:	boolean

	Raise:	IllegalState – has_assessment_section_begun() is false or is_assessment_section_over() is true

	Raise:	NotFound – assessment_section_id or item_id is not found, or item_id not part of assessment_section_id

	Raise:	NullArgument – assessment_section_id or item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Bank.get_unanswered_questions(assessment_section_id)

	Gets the unanswered questions of this assessment section.

	Parameters:	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	Returns:	the list of questions with no rsponses

	Return type:	osid.assessment.QuestionList

	Raise:	IllegalState – has_assessment_section_begun() is false or is_assessment_section_over() is true

	Raise:	NotFound – assessment_section_id is not found

	Raise:	NullArgument – assessment_section_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.has_unanswered_questions(assessment_section_id)

	Tests if there are unanswered questions in this assessment section.

	Parameters:	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	Returns:	true if there are unanswered questions, false otherwise

	Return type:	boolean

	Raise:	IllegalState – has_assessment_section_begun() is false or is_assessment_section_over() is true

	Raise:	NotFound – assessment_section_id is not found

	Raise:	NullArgument – assessment_section_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_first_unanswered_question(assessment_section_id)

	Gets the first unanswered question in this assesment section.

	Parameters:	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	Returns:	the first unanswered question

	Return type:	osid.assessment.Question

	Raise:	IllegalState – has_unanswered_questions() is false

	Raise:	NotFound – assessment_section_id is not found

	Raise:	NullArgument – assessment_section_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.has_next_unanswered_question(assessment_section_id, item_id)

	Tests if there is a next unanswered question following the given question Id.

	Parameters:	
	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	item_id (osid.id.Id) – Id of the Item

	Returns:	true if there is a next unanswered question, false otherwise

	Return type:	boolean

	Raise:	IllegalState – has_assessment_section_begun() is false or is_assessment_section_over() is true

	Raise:	NotFound – assessment_section_id or item_id is not found, or item_id not part of assessment_section_id

	Raise:	NullArgument – assessment_section_id or item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_next_unanswered_question(assessment_section_id, item_id)

	Gets the next unanswered question in this assesment section.

	Parameters:	
	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	item_id (osid.id.Id) – Id of the Item

	Returns:	the next unanswered question

	Return type:	osid.assessment.Question

	Raise:	IllegalState – has_next_unanswered_question() is false

	Raise:	NotFound – assessment_section_id or item_id is not found, or item_id not part of assessment_section_id

	Raise:	NullArgument – assessment_section_id or item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.has_previous_unanswered_question(assessment_section_id, item_id)

	Tests if there is a previous unanswered question preceeding the given question Id.

	Parameters:	
	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	item_id (osid.id.Id) – Id of the Item

	Returns:	true if there is a previous unanswered question, false otherwise

	Return type:	boolean

	Raise:	IllegalState – has_assessment_section_begun() is false or is_assessment_section_over() is true

	Raise:	NotFound – assessment_section_id or item_id is not found, or item_id not part of assessment_section_id

	Raise:	NullArgument – assessment_section_id or item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_previous_unanswered_question(assessment_section_id, item_id)

	Gets the previous unanswered question in this assesment section.

	Parameters:	
	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	item_id (osid.id.Id) – Id of the Item

	Returns:	the previous unanswered question

	Return type:	osid.assessment.Question

	Raise:	IllegalState – has_previous_unanswered_question() is false

	Raise:	NotFound – assessment_section_id or item_id is not found, or item_id not part of assessment_section_id

	Raise:	NullArgument – assessment_section_id or item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_response(assessment_section_id, item_id)

	Gets the submitted response to the associated item.

	Parameters:	
	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	item_id (osid.id.Id) – Id of the Item

	Returns:	the response

	Return type:	osid.assessment.Response

	Raise:	IllegalState – has_assessment_section_begun() is false or is_assessment_section_over() is true

	Raise:	NotFound – assessment_section_id or item_id is not found, or item_id not part of assessment_section_id

	Raise:	NullArgument – assessment_section_id or item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Bank.get_responses(assessment_section_id)

	Gets all submitted responses.

	Parameters:	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	Returns:	the list of responses

	Return type:	osid.assessment.ResponseList

	Raise:	IllegalState – has_assessment_section_begun() is false or is_assessment_section_over() is true

	Raise:	NotFound – assessment_section_id is not found

	Raise:	NullArgument – assessment_section_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Bank.clear_response(assessment_section_id, item_id)

	Clears the response to an item The item appears as unanswered.
If no response exists, the method simply returns.

	Parameters:	
	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	item_id (osid.id.Id) – Id of the Item

	Raise:	IllegalState – has_assessment_section_begun() is false or is_assessment_section_over() is true

	Raise:	NotFound – assessment_section_id or item_id is not found, or item_id not part of assessment_section_id

	Raise:	NullArgument – assessment_section_id or item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Bank.finish_assessment_section(assessment_section_id)

	Indicates an assessment section is complete.
Finished sections may or may not allow new or updated responses.

	Parameters:	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	Raise:	IllegalState – has_assessment_section_begun() is false or is_assessment_section_over() is true

	Raise:	NotFound – assessment_section_id is not found

	Raise:	NullArgument – assessment_section_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Bank.is_answer_available(assessment_section_id, item_id)

	Tests if an answer is available for the given item.

	Parameters:	
	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	item_id (osid.id.Id) – Id of the Item

	Returns:	true if an answer are available, false otherwise

	Return type:	boolean

	Raise:	NotFound – assessment_section_id or item_id is not found, or item_id not part of assessment_section_id

	Raise:	NullArgument – assessment_section_id or item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Bank.get_answers(assessment_section_id, item_id)

	Gets the acceptable answers to the associated item.

	Parameters:	
	assessment_section_id (osid.id.Id) – Id of the AssessmentSection

	item_id (osid.id.Id) – Id of the Item

	Returns:	the answers

	Return type:	osid.assessment.AnswerList

	Raise:	IllegalState – is_answer_available() is false

	Raise:	NotFound – assessment_section_id or item_id is not found, or item_id not part of assessment_section_id

	Raise:	NullArgument – assessment_section_id or item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Bank.finish_assessment(assessment_taken_id)

	Indicates the entire assessment is complete.

	Parameters:	assessment_taken_id (osid.id.Id) – Id of the AssessmentTaken

	Raise:	IllegalState – has_begun() is false or is_over() is true

	Raise:	NotFound – assessment_taken_id is not found

	Raise:	NullArgument – assessment_taken_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Item Lookup Methods

	
Bank.can_lookup_items()

	Tests if this user can perform Item lookups.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an application that may opt not to offer lookup
operations.

	Returns:	false if lookup methods are not authorized, true otherwise

	Return type:	boolean

	
Bank.use_comparative_item_view()

	The returns from the lookup methods may omit or translate elements based on this session, such as assessment, and not result in an error.
This view is used when greater interoperability is desired at
the expense of precision.

	
Bank.use_plenary_item_view()

	A complete view of the Item returns is desired.
Methods will return what is requested or result in an error.
This view is used when greater precision is desired at the
expense of interoperability.

	
Bank.use_federated_bank_view()

	Federates the view for methods in this session.
A federated view will include assessment items in assessment
banks which are children of this assessment bank in the
assessment bank hierarchy.

	
Bank.use_isolated_bank_view()

	Isolates the view for methods in this session.
An isolated view restricts lookups to this assessment bank only.

	
Bank.get_item(item_id)

	Gets the Item specified by its Id.
In plenary mode, the exact Id is found or a NotFound
results. Otherwise, the returned Item may have a different
Id than requested, such as the case where a duplicate Id
was assigned to an Item and retained for compatibility.

	Parameters:	item_id (osid.id.Id) – the Id of the Item to retrieve

	Returns:	the returned Item

	Return type:	osid.assessment.Item

	Raise:	NotFound – no Item found with the given Id

	Raise:	NullArgument – item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_items_by_ids(item_ids)

	Gets an ItemList corresponding to the given IdList.
In plenary mode, the returned list contains all of the items
specified in the Id list, in the order of the list,
including duplicates, or an error results if an Id in the
supplied list is not found or inaccessible. Otherwise,
inaccessible Items may be omitted from the list and may
present the elements in any order including returning a unique
set.

	Parameters:	item_ids (osid.id.IdList) – the list of Ids to retrieve

	Returns:	the returned Item list

	Return type:	osid.assessment.ItemList

	Raise:	NotFound – an Id was not found

	Raise:	NullArgument – item_ids is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_items_by_genus_type(item_genus_type)

	Gets an ItemList corresponding to the given assessment item genus Type which does not include assessment items of genus types derived from the specified Type.
In plenary mode, the returned list contains all known assessment
items or an error results. Otherwise, the returned list may
contain only those assessment items that are accessible through
this session.

	Parameters:	item_genus_type (osid.type.Type) – an assessment item genus type

	Returns:	the returned Item list

	Return type:	osid.assessment.ItemList

	Raise:	NullArgument – item_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_items_by_parent_genus_type(item_genus_type)

	Gets an ItemList corresponding to the given assessment item genus Type and include any additional assessment items with genus types derived from the specified Type.
In plenary mode, the returned list contains all known assessment
items or an error results. Otherwise, the returned list may
contain only those assessment items that are accessible through
this session.

	Parameters:	item_genus_type (osid.type.Type) – an assessment item genus type

	Returns:	the returned Item list

	Return type:	osid.assessment.ItemList

	Raise:	NullArgument – item_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_items_by_record_type(item_record_type)

	Gets an ItemList containing the given assessment item record Type.
In plenary mode, the returned list contains all known items or
an error results. Otherwise, the returned list may contain only
those assessment items that are accessible through this session.

	Parameters:	item_record_type (osid.type.Type) – an item record type

	Returns:	the returned Item list

	Return type:	osid.assessment.ItemList

	Raise:	NullArgument – item_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_items_by_question(question_id)

	Gets an ItemList containing the given question.
In plenary mode, the returned list contains all known items or
an error results. Otherwise, the returned list may contain only
those assessment items that are accessible through this session.

	Parameters:	question_id (osid.id.Id) – a question Id

	Returns:	the returned Item list

	Return type:	osid.assessment.ItemList

	Raise:	NullArgument – question_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_items_by_answer(answer_id)

	Gets an ItemList containing the given answer.
In plenary mode, the returned list contains all known items or
an error results. Otherwise, the returned list may contain only
those assessment items that are accessible through this session.

	Parameters:	answer_id (osid.id.Id) – an answer Id

	Returns:	the returned Item list

	Return type:	osid.assessment.ItemList

	Raise:	NullArgument – answer_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_items_by_learning_objective(objective_id)

	Gets an ItemList containing the given learning objective.
In plenary mode, the returned list contains all known items or
an error results. Otherwise, the returned list may contain only
those assessment items that are accessible through this session.

	Parameters:	objective_id (osid.id.Id) – a learning objective Id

	Returns:	the returned Item list

	Return type:	osid.assessment.ItemList

	Raise:	NullArgument – objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_items_by_learning_objectives(objective_ids)

	Gets an ItemList containing the given learning objectives.
In plenary mode, the returned list contains all known items or
an error results. Otherwise, the returned list may contain only
those assessment items that are accessible through this session.

	Parameters:	objective_ids (osid.id.IdList) – a list of learning objective Ids

	Returns:	the returned Item list

	Return type:	osid.assessment.ItemList

	Raise:	NullArgument – objective_ids is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

Item Query Methods

	
Bank.can_search_items()

	Tests if this user can perform Item searches.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an pplication that may wish not to offer search
operations to unauthorized users.

	Returns:	false if search methods are not authorized, true otherwise

	Return type:	boolean

	
Bank.use_federated_bank_view()

	Federates the view for methods in this session.
A federated view will include assessment items in assessment
banks which are children of this assessment bank in the
assessment bank hierarchy.

	
Bank.use_isolated_bank_view()

	Isolates the view for methods in this session.
An isolated view restricts lookups to this assessment bank only.

	
Bank.item_query

	Gets an assessment item query.

	Returns:	the assessment item query

	Return type:	osid.assessment.ItemQuery

	
Bank.get_items_by_query(item_query)

	Gets a list of Items matching the given item query.

	Parameters:	item_query (osid.assessment.ItemQuery) – the item query

	Returns:	the returned ItemList

	Return type:	osid.assessment.ItemList

	Raise:	NullArgument – item_query is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – item_query is not of this service

Item Admin Methods

	
Bank.can_create_items()

	Tests if this user can create Items.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known creating an Item
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer create
operations to an unauthorized user.

	Returns:	false if Item creation is not authorized, true otherwise

	Return type:	boolean

	
Bank.can_create_item_with_record_types(item_record_types)

	Tests if this user can create a single Item using the desired record types.
While AssessmentManager.getItemRecordTypes() can be used to
examine which records are supported, this method tests which
record(s) are required for creating a specific Item.
Providing an empty array tests if an Item can be created
with no records.

	Parameters:	item_record_types (osid.type.Type[]) – array of item record types

	Returns:	true if Item creation using the specified record Types is supported, false otherwise

	Return type:	boolean

	Raise:	NullArgument – item_record_types is null

	
Bank.get_item_form_for_create(item_record_types)

	Gets the assessment item form for creating new assessment items.
A new form should be requested for each create transaction.

	Parameters:	item_record_types (osid.type.Type[]) – array of item record types to be included in the create operation or an empty list if none

	Returns:	the assessment item form

	Return type:	osid.assessment.ItemForm

	Raise:	NullArgument – item_record_types is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – unable to get form for requested record types

	
Bank.create_item(item_form)

	Creates a new Item.

	Parameters:	item_form (osid.assessment.ItemForm) – the form for this Item

	Returns:	the new Item

	Return type:	osid.assessment.Item

	Raise:	IllegalState – item_form already used in a create transaction

	Raise:	InvalidArgument – one or more of the form elements is invalid

	Raise:	NullArgument – item_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – item_form did not originate from get_item_form_for_create()

	
Bank.can_update_items()

	Tests if this user can update Items.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known updating an Item
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer update
operations to an unauthorized user.

	Returns:	false if assessment item modification is not authorized, true otherwise

	Return type:	boolean

	
Bank.get_item_form_for_update(item_id)

	Gets the assessment item form for updating an existing item.
A new item form should be requested for each update transaction.

	Parameters:	item_id (osid.id.Id) – the Id of the Item

	Returns:	the assessment item form

	Return type:	osid.assessment.ItemForm

	Raise:	NotFound – item_id is not found

	Raise:	NullArgument – item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.update_item(item_form)

	Updates an existing item.

	Parameters:	item_form (osid.assessment.ItemForm) – the form containing the elements to be updated

	Raise:	IllegalState – item_form already used in an update transaction

	Raise:	InvalidArgument – the form contains an invalid value

	Raise:	NullArgument – item_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – item_form did not originate from get_item_form_for_update()

	
Bank.can_delete_items()

	Tests if this user can delete Items.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known deleting an Item
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer delete
operations to an unauthorized user.

	Returns:	false if Item deletion is not authorized, true otherwise

	Return type:	boolean

	
Bank.delete_item(item_id)

	Deletes the Item identified by the given Id.

	Parameters:	item_id (osid.id.Id) – the Id of the Item to delete

	Raise:	NotFound – an Item was not found identified by the given Id

	Raise:	NullArgument – item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.can_manage_item_aliases()

	Tests if this user can manage Id aliases for Items.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known changing an alias
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer alias
operations to an unauthorized user.

	Returns:	false if Item aliasing is not authorized, true otherwise

	Return type:	boolean

	
Bank.alias_item(item_id, alias_id)

	Adds an Id to an Item for the purpose of creating compatibility.
The primary Id of the Item is determined by the
provider. The new Id is an alias to the primary Id. If
the alias is a pointer to another item, it is reassigned to the
given item Id.

	Parameters:	
	item_id (osid.id.Id) – the Id of an Item

	alias_id (osid.id.Id) – the alias Id

	Raise:	AlreadyExists – alias_id is in use as a primary Id

	Raise:	NotFound – item_id not found

	Raise:	NullArgument – item_id or alias_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.can_create_questions()

	Tests if this user can create Questions.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known creating a
Question will result in a PermissionDenied. This is
intended as a hint to an application that may opt not to offer
create operations to an unauthorized user.

	Returns:	false if Question creation is not authorized, true otherwise

	Return type:	boolean

	
Bank.can_create_question_with_record_types(question_record_types)

	Tests if this user can create a single Question using the desired record types.
While AssessmentManager.getQuestionRecordTypes() can be used
to examine which records are supported, this method tests which
record(s) are required for creating a specific Question.
Providing an empty array tests if a Question can be created
with no records.

	Parameters:	question_record_types (osid.type.Type[]) – array of question record types

	Returns:	true if Question creation using the specified record Types is supported, false otherwise

	Return type:	boolean

	Raise:	NullArgument – question_record_types is null

	
Bank.get_question_form_for_create(item_id, question_record_types)

	Gets the question form for creating new questions.
A new form should be requested for each create transaction.

	Parameters:	
	item_id (osid.id.Id) – an assessment item Id

	question_record_types (osid.type.Type[]) – array of question record types to be included in the create operation or an empty list if none

	Returns:	the question form

	Return type:	osid.assessment.QuestionForm

	Raise:	NullArgument – question_record_types is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – unable to get form for requested record types

	
Bank.create_question(question_form)

	Creates a new Question.

	Parameters:	question_form (osid.assessment.QuestionForm) – the form for this Question

	Returns:	the new Question

	Return type:	osid.assessment.Question

	Raise:	AlreadyExists – a question already exists for this item

	Raise:	IllegalState – question_form already used in a create transaction

	Raise:	InvalidArgument – one or more of the form elements is invalid

	Raise:	NullArgument – question_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – question_form did not originate from get_question_form_for_create()

	
Bank.can_update_questions()

	Tests if this user can update Questions.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known updating a
Question will result in a PermissionDenied. This is
intended as a hint to an application that may opt not to offer
update operations to an unauthorized user.

	Returns:	false if question modification is not authorized, true otherwise

	Return type:	boolean

	
Bank.get_question_form_for_update(question_id)

	Gets the question form for updating an existing question.
A new question form should be requested for each update
transaction.

	Parameters:	question_id (osid.id.Id) – the Id of the Question

	Returns:	the question form

	Return type:	osid.assessment.QuestionForm

	Raise:	NotFound – question_id is not found

	Raise:	NullArgument – question_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.update_question(question_form)

	Updates an existing question.

	Parameters:	question_form (osid.assessment.QuestionForm) – the form containing the elements to be updated

	Raise:	IllegalState – question_form already used in an update transaction

	Raise:	InvalidArgument – the form contains an invalid value

	Raise:	NullArgument – question_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – question_form did not originate from get_question_form_for_update()

	
Bank.can_delete_questions()

	Tests if this user can delete Questions.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known deleting a
Question will result in a PermissionDenied. This is
intended as a hint to an application that may opt not to offer
delete operations to an unauthorized user.

	Returns:	false if Question deletion is not authorized, true otherwise

	Return type:	boolean

	
Bank.delete_question(question_id)

	Deletes the Question identified by the given Id.

	Parameters:	question_id (osid.id.Id) – the Id of the Question to delete

	Raise:	NotFound – a Question was not found identified by the given Id

	Raise:	NullArgument – question_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.can_create_answers()

	Tests if this user can create Answers.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known creating a Answer
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer create
operations to an unauthorized user.

	Returns:	false if Answer creation is not authorized, true otherwise

	Return type:	boolean

	
Bank.can_create_answers_with_record_types(answer_record_types)

	Tests if this user can create a single Answer using the desired record types.
While AssessmentManager.getAnswerRecordTypes() can be used
to examine which records are supported, this method tests which
record(s) are required for creating a specific Answer.
Providing an empty array tests if an Answer can be created
with no records.

	Parameters:	answer_record_types (osid.type.Type[]) – array of answer record types

	Returns:	true if Answer creation using the specified record Types is supported, false otherwise

	Return type:	boolean

	Raise:	NullArgument – answern_record_types is null

	
Bank.get_answer_form_for_create(item_id, answer_record_types)

	Gets the answer form for creating new answers.
A new form should be requested for each create transaction.

	Parameters:	
	item_id (osid.id.Id) – an assessment item Id

	answer_record_types (osid.type.Type[]) – array of answer record types to be included in the create operation or an empty list if none

	Returns:	the answer form

	Return type:	osid.assessment.AnswerForm

	Raise:	NullArgument – answer_record_types is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – unable to get form for requested record types

	
Bank.create_answer(answer_form)

	Creates a new Answer.

	Parameters:	answer_form (osid.assessment.AnswerForm) – the form for this Answer

	Returns:	the new Answer

	Return type:	osid.assessment.Answer

	Raise:	IllegalState – answer_form already used in a create transaction

	Raise:	InvalidArgument – one or more of the form elements is invalid

	Raise:	NullArgument – answer_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – answer_form did not originate from get_answer_form_for_create()

	
Bank.can_update_answers()

	Tests if this user can update Answers.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known updating an
Answer will result in a PermissionDenied. This is
intended as a hint to an application that may opt not to offer
update operations to an unauthorized user.

	Returns:	false if answer modification is not authorized, true otherwise

	Return type:	boolean

	
Bank.get_answer_form_for_update(answer_id)

	Gets the answer form for updating an existing answer.
A new answer form should be requested for each update
transaction.

	Parameters:	answer_id (osid.id.Id) – the Id of the Answer

	Returns:	the answer form

	Return type:	osid.assessment.AnswerForm

	Raise:	NotFound – answer_id is not found

	Raise:	NullArgument – answer_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.update_answer(answer_form)

	Updates an existing answer.

	Parameters:	answer_form (osid.assessment.AnswerForm) – the form containing the elements to be updated

	Raise:	IllegalState – answer_form already used in an update transaction

	Raise:	InvalidArgument – the form contains an invalid value

	Raise:	NullArgument – answer_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – answer_form did not originate from get_answer_form_for_update()

	
Bank.can_delete_answers()

	Tests if this user can delete Answers.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known deleting an
Answer will result in a PermissionDenied. This is
intended as a hint to an application that may opt not to offer
delete operations to an unauthorized user.

	Returns:	false if Answer deletion is not authorized, true otherwise

	Return type:	boolean

	
Bank.delete_answer(answer_id)

	Deletes the Answer identified by the given Id.

	Parameters:	answer_id (osid.id.Id) – the Id of the Answer to delete

	Raise:	NotFound – an Answer was not found identified by the given Id

	Raise:	NullArgument – answer_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

Assessment Lookup Methods

	
Bank.can_lookup_assessments()

	Tests if this user can perform Assessment lookups.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an application that may opt not to offer lookup
operations to unauthorized users.

	Returns:	false if lookup methods are not authorized, true otherwise

	Return type:	boolean

	
Bank.use_comparative_assessment_view()

	The returns from the lookup methods may omit or translate elements based on this session, such as assessment, and not result in an error.
This view is used when greater interoperability is desired at
the expense of precision.

	
Bank.use_plenary_assessment_view()

	A complete view of the Assessment returns is desired.
Methods will return what is requested or result in an error.
This view is used when greater precision is desired at the
expense of interoperability.

	
Bank.use_federated_bank_view()

	Federates the view for methods in this session.
A federated view will include assessment items in assessment
banks which are children of this assessment bank in the
assessment bank hierarchy.

	
Bank.use_isolated_bank_view()

	Isolates the view for methods in this session.
An isolated view restricts lookups to this assessment bank only.

	
Bank.get_assessment(assessment_id)

	Gets the Assessment specified by its Id.
In plenary mode, the exact Id is found or a NotFound
results. Otherwise, the returned Assessment may have a
different Id than requested, such as the case where a
duplicate Id was assigned to a Assessment and retained
for compatibility.

	Parameters:	assessment_id (osid.id.Id) – Id of the Assessment

	Returns:	the assessment

	Return type:	osid.assessment.Assessment

	Raise:	NotFound – assessment_id not found

	Raise:	NullArgument – assessment_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_by_ids(assessment_ids)

	Gets an AssessmentList corresponding to the given IdList.
In plenary mode, the returned list contains all of the
assessments specified in the Id list, in the order of the
list, including duplicates, or an error results if an Id in
the supplied list is not found or inaccessible. Otherwise,
inaccessible Assessments may be omitted from the list and
may present the elements in any order including returning a
unique set.

	Parameters:	assessment_ids (osid.id.IdList) – the list of Ids to retrieve

	Returns:	the returned Assessment list

	Return type:	osid.assessment.AssessmentList

	Raise:	NotFound – an Id was not found

	Raise:	NullArgument – assessment_ids is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – assessment failure

	
Bank.get_assessments_by_genus_type(assessment_genus_type)

	Gets an AssessmentList corresponding to the given assessment genus Type which does not include assessments of types derived from the specified Type.
In plenary mode, the returned list contains all known
assessments or an error results. Otherwise, the returned list
may contain only those assessments that are accessible through
this session.

	Parameters:	assessment_genus_type (osid.type.Type) – an assessment genus type

	Returns:	the returned Assessment list

	Return type:	osid.assessment.AssessmentList

	Raise:	NullArgument – assessment_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_by_parent_genus_type(assessment_genus_type)

	Gets an AssessmentList corresponding to the given assessment genus Type and include any additional assessments with genus types derived from the specified Type.
In plenary mode, the returned list contains all known
assessments or an error results. Otherwise, the returned list
may contain only those assessments that are accessible through
this session.

	Parameters:	assessment_genus_type (osid.type.Type) – an assessment genus type

	Returns:	the returned Assessment list

	Return type:	osid.assessment.AssessmentList

	Raise:	NullArgument – assessment_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_by_record_type(assessment_record_type)

	Gets an AssessmentList corresponding to the given assessment record Type.
The set of assessments implementing the given record type is
returned. In plenary mode, the returned list contains all known
assessments or an error results. Otherwise, the returned list
may contain only those assessments that are accessible through
this session.

	Parameters:	assessment_record_type (osid.type.Type) – an assessment record type

	Returns:	the returned Assessment list

	Return type:	osid.assessment.AssessmentList

	Raise:	NullArgument – assessment_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.assessments

	Gets all Assessments.
In plenary mode, the returned list contains all known
assessments or an error results. Otherwise, the returned list
may contain only those assessments that are accessible through
this session.

	Returns:	a list of Assessments

	Return type:	osid.assessment.AssessmentList

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

Assessment Query Methods

	
Bank.can_search_assessments()

	Tests if this user can perform Assessment searches.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an pplication that may wish not to offer search
operations to unauthorized users.

	Returns:	false if search methods are not authorized, true otherwise

	Return type:	boolean

	
Bank.use_federated_bank_view()

	Federates the view for methods in this session.
A federated view will include assessment items in assessment
banks which are children of this assessment bank in the
assessment bank hierarchy.

	
Bank.use_isolated_bank_view()

	Isolates the view for methods in this session.
An isolated view restricts lookups to this assessment bank only.

	
Bank.assessment_query

	Gets an assessment query.

	Returns:	the assessment query

	Return type:	osid.assessment.AssessmentQuery

	
Bank.get_assessments_by_query(assessment_query)

	Gets a list of Assessments matching the given assessment query.

	Parameters:	assessment_query (osid.assessment.AssessmentQuery) – the assessment query

	Returns:	the returned AssessmentList

	Return type:	osid.assessment.AssessmentList

	Raise:	NullArgument – assessment_query is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – assessment_query is not of this service

Assessment Admin Methods

	
Bank.can_create_assessments()

	Tests if this user can create Assessments.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known creating an
Assessment will result in a PermissionDenied. This is
intended as a hint to an application that may opt not to offer
create operations to an unauthorized user.

	Returns:	false if Assessment creation is not authorized, true otherwise

	Return type:	boolean

	
Bank.can_create_assessment_with_record_types(assessment_record_types)

	Tests if this user can create a single Assessment using the desired record interface types.
While AssessmentManager.getAssessmentRecordTypes() can be
used to examine which record interfaces are supported, this
method tests which record(s) are required for creating a
specific Assessment. Providing an empty array tests if an
Assessment can be created with no records.

	Parameters:	assessment_record_types (osid.type.Type[]) – array of assessment record types

	Returns:	true if Assessment creation using the specified record Types is supported, false otherwise

	Return type:	boolean

	Raise:	NullArgument – assessment_record_types is null

	
Bank.get_assessment_form_for_create(assessment_record_types)

	Gets the assessment form for creating new assessments.
A new form should be requested for each create transaction.

	Parameters:	assessment_record_types (osid.type.Type[]) – array of assessment record types to be included in the create operation or an empty list if none

	Returns:	the assessment form

	Return type:	osid.assessment.AssessmentForm

	Raise:	NullArgument – assessment_record_types is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – unable to get form for requested record types

	
Bank.create_assessment(assessment_form)

	Creates a new Assessment.

	Parameters:	assessment_form (osid.assessment.AssessmentForm) – the form for this Assessment

	Returns:	the new Assessment

	Return type:	osid.assessment.Assessment

	Raise:	IllegalState – assessment_form already used in a create transaction

	Raise:	InvalidArgument – one or more of the form elements is invalid

	Raise:	NullArgument – assessment_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – assessment_form did not originate from get_assessment_form_for_create()

	
Bank.can_update_assessments()

	Tests if this user can update Assessments.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known updating an
Assessment will result in a PermissionDenied. This is
intended as a hint to an application that may opt not to offer
update operations to an unauthorized user.

	Returns:	false if Assessment modification is not authorized, true otherwise

	Return type:	boolean

	
Bank.get_assessment_form_for_update(assessment_id)

	Gets the assessment form for updating an existing assessment.
A new assessment form should be requested for each update
transaction.

	Parameters:	assessment_id (osid.id.Id) – the Id of the Assessment

	Returns:	the assessment form

	Return type:	osid.assessment.AssessmentForm

	Raise:	NotFound – assessment_id is not found

	Raise:	NullArgument – assessment_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.update_assessment(assessment_form)

	Updates an existing assessment.

	Parameters:	assessment_form (osid.assessment.AssessmentForm) – the form containing the elements to be updated

	Raise:	IllegalState – assessment_form already used in an update transaction

	Raise:	InvalidArgument – the form contains an invalid value

	Raise:	NullArgument – assessment_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – assessment_form did not originate from get_assessment_form_for_update()

	
Bank.can_delete_assessments()

	Tests if this user can delete Assessments.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known deleting an
Assessment will result in a PermissionDenied. This is
intended as a hint to an application that may opt not to offer
delete operations to an unauthorized user.

	Returns:	false if Assessment deletion is not authorized, true otherwise

	Return type:	boolean

	
Bank.delete_assessment(assessment_id)

	Deletes an Assessment.

	Parameters:	assessment_id (osid.id.Id) – the Id of the Assessment to remove

	Raise:	NotFound – assessment_id not found

	Raise:	NullArgument – assessment_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.can_manage_assessment_aliases()

	Tests if this user can manage Id aliases for Assessments.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known changing an alias
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer alias
operations to an unauthorized user.

	Returns:	false if Assessment aliasing is not authorized, true otherwise

	Return type:	boolean

	
Bank.alias_assessment(assessment_id, alias_id)

	Adds an Id to an Assessment for the purpose of creating compatibility.
The primary Id of the Assessment is determined by the
provider. The new Id is an alias to the primary Id. If
the alias is a pointer to another assessment, it is reassigned
to the given assessment Id.

	Parameters:	
	assessment_id (osid.id.Id) – the Id of an Assessment

	alias_id (osid.id.Id) – the alias Id

	Raise:	AlreadyExists – alias_id is in use as a primary Id

	Raise:	NotFound – assessment_id not found

	Raise:	NullArgument – assessment_id or alias_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

Assessment Basic Authoring Methods

	
Bank.can_author_assessments()

	Tests if this user can author assessments.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known mapping methods in
this session will result in a PermissionDenied. This is
intended as a hint to an application that may opt not to offer
authoring operations to unauthorized users.

	Returns:	false if mapping is not authorized, true otherwise

	Return type:	boolean

	
Bank.get_items(assessment_taken_id)

	Gets the items questioned in a assessment.

	Parameters:	assessment_taken_id (osid.id.Id) – Id of the AssessmentTaken

	Returns:	the list of assessment questions

	Return type:	osid.assessment.ItemList

	Raise:	NotFound – assessment_taken_id is not found

	Raise:	NullArgument – assessment_taken_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.add_item(assessment_id, item_id)

	Adds an existing Item to an assessment.

	Parameters:	
	assessment_id (osid.id.Id) – the Id of the Assessment

	item_id (osid.id.Id) – the Id of the Item

	Raise:	NotFound – assessment_id or item_id not found

	Raise:	NullArgument – assessment_id or item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.remove_item(assessment_id, item_id)

	Removes an Item from this assessment.

	Parameters:	
	assessment_id (osid.id.Id) – the Id of the Assessment

	item_id (osid.id.Id) – the Id of the Item

	Raise:	NotFound – assessment_id or item_id not found or item_id not on assessmentid

	Raise:	NullArgument – assessment_id or item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.move_item(assessment_id, item_id, preceeding_item_id)

	Moves an existing item to follow another item in an assessment.

	Parameters:	
	assessment_id (osid.id.Id) – the Id of the Assessment

	item_id (osid.id.Id) – the Id of an Item

	preceeding_item_id (osid.id.Id) – the Id of a preceeding Item in the sequence

	Raise:	NotFound – assessment_id is not found, or item_id or preceeding_item_id not on assessment_id

	Raise:	NullArgument – assessment_id, item_id or preceeding_item_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.order_items(item_ids, assessment_id)

	Sequences existing items in an assessment.

	Parameters:	
	item_ids (osid.id.Id[]) – the Id of the Items

	assessment_id (osid.id.Id) – the Id of the Assessment

	Raise:	NotFound – assessment_id is not found or an item_id is not on assessment_id

	Raise:	NullArgument – assessment_id or item_ids is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

Assessment Offered Lookup Methods

	
Bank.can_lookup_assessments_offered()

	Tests if this user can perform AssessmentOffered lookups.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an application that may opt not to offer lookup
operations to unauthorized users.

	Returns:	false if lookup methods are not authorized, true otherwise

	Return type:	boolean

	
Bank.use_comparative_assessment_offered_view()

	The returns from the lookup methods may omit or translate elements based on this session, such as assessment, and not result in an error.
This view is used when greater interoperability is desired at
the expense of precision.

	
Bank.use_plenary_assessment_offered_view()

	A complete view of the AssessmentOffered returns is desired.
Methods will return what is requested or result in an error.
This view is used when greater precision is desired at the
expense of interoperability.

	
Bank.use_federated_bank_view()

	Federates the view for methods in this session.
A federated view will include assessment items in assessment
banks which are children of this assessment bank in the
assessment bank hierarchy.

	
Bank.use_isolated_bank_view()

	Isolates the view for methods in this session.
An isolated view restricts lookups to this assessment bank only.

	
Bank.get_assessment_offered(assessment_offered_id)

	Gets the AssessmentOffered specified by its Id.
In plenary mode, the exact Id is found or a NotFound
results. Otherwise, the returned AssessmentOffered may have
a different Id than requested, such as the case where a
duplicate Id was assigned to an AssessmentOffered and
retained for compatibility.

	Parameters:	assessment_offered_id (osid.id.Id) – Id of the AssessmentOffered

	Returns:	the assessment offered

	Return type:	osid.assessment.AssessmentOffered

	Raise:	NotFound – assessment_offered_id not found

	Raise:	NullArgument – assessment_offered_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_offered_by_ids(assessment_offered_ids)

	Gets an AssessmentOfferedList corresponding to the given IdList.
In plenary mode, the returned list contains all of the
assessments specified in the Id list, in the order of the
list, including duplicates, or an error results if an Id in
the supplied list is not found or inaccessible. Otherwise,
inaccessible AssessmentOffered objects may be omitted from
the list and may present the elements in any order including
returning a unique set.

	Parameters:	assessment_offered_ids (osid.id.IdList) – the list of Ids to retrieve

	Returns:	the returned AssessmentOffered list

	Return type:	osid.assessment.AssessmentOfferedList

	Raise:	NotFound – an Id was not found

	Raise:	NullArgument – assessment_offered_ids is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – assessment failure

	
Bank.get_assessments_offered_by_genus_type(assessment_offered_genus_type)

	Gets an AssessmentOfferedList corresponding to the given assessment offered genus Type which does not include assessments of types derived from the specified Type.
In plenary mode, the returned list contains all known
assessments offered or an error results. Otherwise, the returned
list may contain only those assessments offered that are
accessible through this session.

	Parameters:	assessment_offered_genus_type (osid.type.Type) – an assessment offered genus type

	Returns:	the returned AssessmentOffered list

	Return type:	osid.assessment.AssessmentOfferedList

	Raise:	NullArgument – assessment_offered_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_offered_by_parent_genus_type(assessment_offered_genus_type)

	Gets an AssessmentOfferedList corresponding to the given assessment offered genus Type and include any additional assessments with genus types derived from the specified Type.
In plenary mode, the returned list contains all known
assessments or an error results. Otherwise, the returned list
may contain only those assessments offered that are accessible
through this session.

	Parameters:	assessment_offered_genus_type (osid.type.Type) – an assessment offered genus type

	Returns:	the returned AssessmentOffered list

	Return type:	osid.assessment.AssessmentOfferedList

	Raise:	NullArgument – assessment_offered_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_offered_by_record_type(assessment_record_type)

	Gets an AssessmentOfferedList corresponding to the given assessment offered record Type.
The set of assessments implementing the given record type is
returned. In plenary mode, the returned list contains all known
assessments offered or an error results. Otherwise, the returned
list may contain only those assessments offered that are
accessible through this session.

	Parameters:	assessment_record_type (osid.type.Type) – an assessment offered record type

	Returns:	the returned AssessmentOffered list

	Return type:	osid.assessment.AssessmentOfferedList

	Raise:	NullArgument – assessment_offered_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_offered_by_date(start, end)

	Gets an AssessmentOfferedList that have designated start times where the start times fall in the given range inclusive.
In plenary mode, the returned list contains all known
assessments offered or an error results. Otherwise, the returned
list may contain only those assessments offered that are
accessible through this session.

	Parameters:	
	start (osid.calendaring.DateTime) – start of time range

	end (osid.calendaring.DateTime) – end of time range

	Returns:	the returned AssessmentOffered list

	Return type:	osid.assessment.AssessmentOfferedList

	Raise:	InvalidArgument – end is less than start

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_offered_for_assessment(assessment_id)

	Gets an AssessmentOfferedList by the given assessment.
In plenary mode, the returned list contains all known
assessments offered or an error results. Otherwise, the returned
list may contain only those assessments offered that are
accessible through this session.

	Parameters:	assessment_id (osid.id.Id) – Id of an Assessment

	Returns:	the returned AssessmentOffered list

	Return type:	osid.assessment.AssessmentOfferedList

	Raise:	NullArgument – assessment_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.assessments_offered

	Gets all AssessmentOffered elements.
In plenary mode, the returned list contains all known
assessments offered or an error results. Otherwise, the returned
list may contain only those assessments offered that are
accessible through this session.

	Returns:	a list of AssessmentOffered elements

	Return type:	osid.assessment.AssessmentOfferedList

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

Assessment Offered Query Methods

	
Bank.can_search_assessments_offered()

	Tests if this user can perform AssessmentOffered searches.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an application that may wish not to offer search
operations to unauthorized users.

	Returns:	false if search methods are not authorized, true otherwise

	Return type:	boolean

	
Bank.use_federated_bank_view()

	Federates the view for methods in this session.
A federated view will include assessment items in assessment
banks which are children of this assessment bank in the
assessment bank hierarchy.

	
Bank.use_isolated_bank_view()

	Isolates the view for methods in this session.
An isolated view restricts lookups to this assessment bank only.

	
Bank.assessment_offered_query

	Gets an assessment offered query.

	Returns:	the assessment offered query

	Return type:	osid.assessment.AssessmentOfferedQuery

	
Bank.get_assessments_offered_by_query(assessment_offered_query)

	Gets a list of AssessmentOffered elements matching the given assessment offered query.

	Parameters:	assessment_offered_query (osid.assessment.AssessmentOfferedQuery) – the assessment offered query

	Returns:	the returned AssessmentOfferedList

	Return type:	osid.assessment.AssessmentOfferedList

	Raise:	NullArgument – assessment_offered_query is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – assessment_offered_query is not of this service

Assessment Offered Admin Methods

	
Bank.can_create_assessments_offered()

	Tests if this user can create AssessmentOffered objects.
A return of true does not guarantee successful authoriization. A
return of false indicates that it is known creating an
AssessmentOffered will result in a PermissionDenied.
This is intended as a hint to an application that may opt not to
offer create operations to an unauthorized user.

	Returns:	false if AssessmentOffered creation is not authorized, true otherwise

	Return type:	boolean

	
Bank.can_create_assessment_offered_with_record_types(assessment_offered_record_types)

	Tests if this user can create a single AssessmentOffered using the desired record types.
While AssessmentManager.getAssessmentOfferedRecordTypes()
can be used to examine which records are supported, this method
tests which record(s) are required for creating a specific
AssessmentOffered. Providing an empty array tests if an
AssessmentOffered can be created with no records.

	Parameters:	assessment_offered_record_types (osid.type.Type[]) – array of assessment offered record types

	Returns:	true if AssessmentOffered creation using the specified record Types is supported, false otherwise

	Return type:	boolean

	Raise:	NullArgument – assessment_offered_record_types is null

	
Bank.get_assessment_offered_form_for_create(assessment_id, assessment_offered_record_types)

	Gets the assessment offered form for creating new assessments offered.
A new form should be requested for each create transaction.

	Parameters:	
	assessment_id (osid.id.Id) – the Id of the related Assessment

	assessment_offered_record_types (osid.type.Type[]) – array of assessment offered record types to be included in the create operation or an empty list if none

	Returns:	the assessment offered form

	Return type:	osid.assessment.AssessmentOfferedForm

	Raise:	NotFound – assessment_id is not found

	Raise:	NullArgument – assessment_id or assessment_offered_record_types is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – unable to get form for requested record types

	
Bank.create_assessment_offered(assessment_offered_form)

	Creates a new AssessmentOffered.

	Parameters:	assessment_offered_form (osid.assessment.AssessmentOfferedForm) – the form for this AssessmentOffered

	Returns:	the new AssessmentOffered

	Return type:	osid.assessment.AssessmentOffered

	Raise:	IllegalState – assessment_offrered_form already used in a create transaction

	Raise:	InvalidArgument – one or more of the form elements is invalid

	Raise:	NullArgument – assessment_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – assessment_form did not originate from get_assessment_form_for_create()

	
Bank.can_update_assessments_offered()

	Tests if this user can update AssessmentOffered objects.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known updating an
AssessmentOffered will result in a PermissionDenied.
This is intended as a hint to an application that may opt not to
offer update operations to an unauthorized user.

	Returns:	false if Assessment modification is not authorized, true otherwise

	Return type:	boolean

	
Bank.get_assessment_offered_form_for_update(assessment_offered_id)

	Gets the assessment offered form for updating an existing assessment offered.
A new assessment offered form should be requested for each
update transaction.

	Parameters:	assessment_offered_id (osid.id.Id) – the Id of the AssessmentOffered

	Returns:	the assessment offered form

	Return type:	osid.assessment.AssessmentOfferedForm

	Raise:	NotFound – assessment_offered_id is not found

	Raise:	NullArgument – assessment_offered_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.update_assessment_offered(assessment_offered_form)

	Updates an existing assessment offered.

	Parameters:	assessment_offered_form (osid.assessment.AssessmentOfferedForm) – the form containing the elements to be updated

	Raise:	IllegalState – assessment_offrered_form already used in an update transaction

	Raise:	InvalidArgument – the form contains an invalid value

	Raise:	NullArgument – assessment_offered_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – assessment_form did not originate from get_assessment_form_for_update()

	
Bank.can_delete_assessments_offered()

	Tests if this user can delete AssessmentsOffered.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known deleting an
AssessmentOffered will result in a PermissionDenied.
This is intended as a hint to an application that may opt not to
offer a delete operations to unauthorized users.

	Returns:	false if AssessmentOffered deletion is not authorized, true otherwise

	Return type:	boolean

	
Bank.delete_assessment_offered(assessment_offered_id)

	Deletes an AssessmentOffered.

	Parameters:	assessment_offered_id (osid.id.Id) – the Id of the AssessmentOffered to remove

	Raise:	NotFound – assessment_offered_id not found

	Raise:	NullArgument – assessment_offered_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.can_manage_assessment_offered_aliases()

	Tests if this user can manage Id aliases for AssessmentsOffered.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known changing an alias
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer alias
operations to an unauthorized user.

	Returns:	false if AssessmentOffered aliasing is not authorized, true otherwise

	Return type:	boolean

	
Bank.alias_assessment_offered(assessment_offered_id, alias_id)

	Adds an Id to an AssessmentOffered for the purpose of creating compatibility.
The primary Id of the AssessmentOffered is determined by
the provider. The new Id is an alias to the primary Id.
If the alias is a pointer to another assessment offered, it is
reassigned to the given assessment offered Id.

	Parameters:	
	assessment_offered_id (osid.id.Id) – the Id of an AssessmentOffered

	alias_id (osid.id.Id) – the alias Id

	Raise:	AlreadyExists – alias_id is in use as a primary Id

	Raise:	NotFound – assessment_offered_id not found

	Raise:	NullArgument – assessment_offered_id or alias_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

Assessment Taken Lookup Methods

	
Bank.can_lookup_assessments_taken()

	Tests if this user can perform AssessmentTaken lookups.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an application that may opt not to offer lookup
operations to unauthorized users.

	Returns:	false if lookup methods are not authorized, true otherwise

	Return type:	boolean

	
Bank.use_comparative_assessment_taken_view()

	The returns from the lookup methods may omit or translate elements based on this session, such as assessment, and not result in an error.
This view is used when greater interoperability is desired at
the expense of precision.

	
Bank.use_plenary_assessment_taken_view()

	A complete view of the AssessmentTaken returns is desired.
Methods will return what is requested or result in an error.
This view is used when greater precision is desired at the
expense of interoperability.

	
Bank.use_federated_bank_view()

	Federates the view for methods in this session.
A federated view will include assessment items in assessment
banks which are children of this assessment bank in the
assessment bank hierarchy.

	
Bank.use_isolated_bank_view()

	Isolates the view for methods in this session.
An isolated view restricts lookups to this assessment bank only.

	
Bank.get_assessment_taken(assessment_taken_id)

	Gets the AssessmentTaken specified by its Id.
In plenary mode, the exact Id is found or a NotFound
results. Otherwise, the returned AssessmentTaken may have a
different Id than requested, such as the case where a
duplicate Id was assigned to an AssessmentTaken and
retained for compatibility.

	Parameters:	assessment_taken_id (osid.id.Id) – Id of the AssessmentTaken

	Returns:	the assessment taken

	Return type:	osid.assessment.AssessmentTaken

	Raise:	NotFound – assessment_taken_id not found

	Raise:	NullArgument – assessment_taken_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_taken_by_ids(assessment_taken_ids)

	Gets an AssessmentTakenList corresponding to the given IdList.
In plenary mode, the returned list contains all of the
assessments specified in the Id list, in the order of the
list, including duplicates, or an error results if an Id in
the supplied list is not found or inaccessible. Otherwise,
inaccessible AssessmentTaken objects may be omitted from the
list and may present the elements in any order including
returning a unique set.

	Parameters:	assessment_taken_ids (osid.id.IdList) – the list of Ids to retrieve

	Returns:	the returned AssessmentTaken list

	Return type:	osid.assessment.AssessmentTakenList

	Raise:	NotFound – an Id was not found

	Raise:	NullArgument – assessment_taken_ids is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – assessment failure

	
Bank.get_assessments_taken_by_genus_type(assessment_taken_genus_type)

	Gets an AssessmentTakenList corresponding to the given assessment taken genus Type which does not include assessments of types derived from the specified Type.
In plenary mode, the returned list contains all known
assessments taken or an error results. Otherwise, the returned
list may contain only those assessments taken that are
accessible through this session.

	Parameters:	assessment_taken_genus_type (osid.type.Type) – an assessment taken genus type

	Returns:	the returned AssessmentTaken list

	Return type:	osid.assessment.AssessmentTakenList

	Raise:	NullArgument – assessment_taken_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_taken_by_parent_genus_type(assessment_taken_genus_type)

	Gets an AssessmentTakenList corresponding to the given assessment taken genus Type and include any additional assessments with genus types derived from the specified Type.
In plenary mode, the returned list contains all known
assessments or an error results. Otherwise, the returned list
may contain only those assessments taken that are accessible
through this session.

	Parameters:	assessment_taken_genus_type (osid.type.Type) – an assessment taken genus type

	Returns:	the returned AssessmentTaken list

	Return type:	osid.assessment.AssessmentTakenList

	Raise:	NullArgument – assessment_taken_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_taken_by_record_type(assessment_taken_record_type)

	Gets an AssessmentTakenList corresponding to the given assessment taken record Type.
The set of assessments implementing the given record type is
returned. In plenary mode, the returned list contains all known
assessments taken or an error results. Otherwise, the returned
list may contain only those assessments taken that are
accessible through this session. In both cases, the order of the
set is not specified.

	Parameters:	assessment_taken_record_type (osid.type.Type) – an assessment taken record type

	Returns:	the returned AssessmentTaken list

	Return type:	osid.assessment.AssessmentTakenList

	Raise:	NullArgument – assessment_taken_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_taken_by_date(from_, to)

	Gets an AssessmentTakenList started in the given date range inclusive.
In plenary mode, the returned list contains all known
assessments taken or an error results. Otherwise, the returned
list may contain only those assessments taken that are
accessible through this session. In both cases, the order of the
set is not specified.

	Parameters:	
	from (osid.calendaring.DateTime) – start date

	to (osid.calendaring.DateTime) – end date

	Returns:	the returned AssessmentTaken list

	Return type:	osid.assessment.AssessmentTakenList

	Raise:	InvalidArgument – from is greater than to

	Raise:	NullArgument – from or to is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_taken_for_taker(resource_id)

	Gets an AssessmentTakenList for the given resource.
In plenary mode, the returned list contains all known
assessments taken or an error results. Otherwise, the returned
list may contain only those assessments taken that are
accessible through this session.

	Parameters:	resource_id (osid.id.Id) – Id of a Resource

	Returns:	the returned AssessmentTaken list

	Return type:	osid.assessment.AssessmentTakenList

	Raise:	NullArgument – resource_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_taken_by_date_for_taker(resource_id, from_, to)

	Gets an AssessmentTakenList started in the given date range inclusive for the given resource.
In plenary mode, the returned list contains all known
assessments taken or an error results. Otherwise, the returned
list may contain only those assessments taken that are
accessible through this session.

	Parameters:	
	resource_id (osid.id.Id) – Id of a Resource

	from (osid.calendaring.DateTime) – start date

	to (osid.calendaring.DateTime) – end date

	Returns:	the returned AssessmentTaken list

	Return type:	osid.assessment.AssessmentTakenList

	Raise:	InvalidArgument – from is greater than to

	Raise:	NullArgument – resource_id, from or to is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_taken_for_assessment(assessment_id)

	Gets an AssessmentTakenList for the given assessment.
In plenary mode, the returned list contains all known
assessments taken or an error results. Otherwise, the returned
list may contain only those assessments taken that are
accessible through this session.

	Parameters:	assessment_id (osid.id.Id) – Id of an Assessment

	Returns:	the returned AssessmentTaken list

	Return type:	osid.assessment.AssessmentTakenList

	Raise:	NullArgument – assessment_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_taken_by_date_for_assessment(assessment_id, from_, to)

	Gets an AssessmentTakenList started in the given date range inclusive for the given assessment.
In plenary mode, the returned list contains all known
assessments taken or an error results. Otherwise, the returned
list may contain only those assessments taken that are
accessible through this session.

	Parameters:	
	assessment_id (osid.id.Id) – Id of an Assessment

	from (osid.calendaring.DateTime) – start date

	to (osid.calendaring.DateTime) – end date

	Returns:	the returned AssessmentTaken list

	Return type:	osid.assessment.AssessmentTakenList

	Raise:	InvalidArgument – from is greater than to

	Raise:	NullArgument – assessment_id, from or to is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_taken_for_taker_and_assessment(resource_id, assessment_id)

	Gets an AssessmentTakenList for the given resource and assessment.
In plenary mode, the returned list contains all known
assessments taken or an error results. Otherwise, the returned
list may contain only those assessments taken that are
accessible through this session.

	Parameters:	
	resource_id (osid.id.Id) – Id of a Resource

	assessment_id (osid.id.Id) – Id of an Assessment

	Returns:	the returned AssessmentTaken list

	Return type:	osid.assessment.AssessmentTakenList

	Raise:	NullArgument – resource_id or assessment_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_taken_by_date_for_taker_and_assessment(resource_id, assessment_id, from_, to)

	Gets an AssessmentTakenList started in the given date range inclusive for the given resource and assessment.
In plenary mode, the returned list contains all known
assessments taken or an error results. Otherwise, the returned
list may contain only those assessments taken that are
accessible through this session.

	Parameters:	
	resource_id (osid.id.Id) – Id of a Resource

	assessment_id (osid.id.Id) – Id of an Assessment

	from (osid.calendaring.DateTime) – start date

	to (osid.calendaring.DateTime) – end date

	Returns:	the returned AssessmentTaken list

	Return type:	osid.assessment.AssessmentTakenList

	Raise:	InvalidArgument – from is greater than to

	Raise:	NullArgument – resource_id, assessment_id, from or to is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_taken_for_assessment_offered(assessment_offered_id)

	Gets an AssessmentTakenList by the given assessment offered.
In plenary mode, the returned list contains all known
assessments taken or an error results. Otherwise, the returned
list may contain only those assessments taken that are
accessible through this session.

	Parameters:	assessment_offered_id (osid.id.Id) – Id of an AssessmentOffered

	Returns:	the returned AssessmentTaken list

	Return type:	osid.assessment.AssessmentTakenList

	Raise:	NullArgument – assessment_offered_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_taken_by_date_for_assessment_offered(assessment_offered_id, from_, to)

	Gets an AssessmentTakenList started in the given date range inclusive for the given assessment offered.
In plenary mode, the returned list contains all known
assessments taken or an error results. Otherwise, the returned
list may contain only those assessments taken that are
accessible through this session.

	Parameters:	
	assessment_offered_id (osid.id.Id) – Id of an AssessmentOffered

	from (osid.calendaring.DateTime) – start date

	to (osid.calendaring.DateTime) – end date

	Returns:	the returned AssessmentTaken list

	Return type:	osid.assessment.AssessmentTakenList

	Raise:	InvalidArgument – from is greater than to

	Raise:	NullArgument – assessment_offered_id, from, or to is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_taken_for_taker_and_assessment_offered(resource_id, assessment_offered_id)

	Gets an AssessmentTakenList for the given resource and assessment offered.
In plenary mode, the returned list contains all known
assessments taken or an error results. Otherwise, the returned
list may contain only those assessments taken that are
accessible through this session.

	Parameters:	
	resource_id (osid.id.Id) – Id of a Resource

	assessment_offered_id (osid.id.Id) – Id of an AssessmentOffered

	Returns:	the returned AssessmentTaken list

	Return type:	osid.assessment.AssessmentTakenList

	Raise:	NullArgument – resource_id or assessmen_offeredt_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.get_assessments_taken_by_date_for_taker_and_assessment_offered(resource_id, assessment_offered_id, from_, to)

	Gets an AssessmentTakenList started in the given date range inclusive for the given resource and assessment offered.
In plenary mode, the returned list contains all known
assessments taken or an error results. Otherwise, the returned
list may contain only those assessments taken that are
accessible through this session.

	Parameters:	
	resource_id (osid.id.Id) – Id of a Resource

	assessment_offered_id (osid.id.Id) – Id of an AssessmentOffered

	from (osid.calendaring.DateTime) – start date

	to (osid.calendaring.DateTime) – end date

	Returns:	the returned AssessmentTaken list

	Return type:	osid.assessment.AssessmentTakenList

	Raise:	InvalidArgument – from is greater than to

	Raise:	NullArgument – resource_id, assessment_offered_id, from, or to is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.assessments_taken

	Gets all AssessmentTaken elements.
In plenary mode, the returned list contains all known
assessments taken or an error results. Otherwise, the returned
list may contain only those assessments taken that are
accessible through this session.

	Returns:	a list of AssessmentTaken elements

	Return type:	osid.assessment.AssessmentTakenList

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

Assessment Taken Query Methods

	
Bank.can_search_assessments_taken()

	Tests if this user can perform AssessmentTaken searches.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an application that may opt not to offer search
operations to unauthorized users.

	Returns:	false if search methods are not authorized, true otherwise

	Return type:	boolean

	
Bank.use_federated_bank_view()

	Federates the view for methods in this session.
A federated view will include assessment items in assessment
banks which are children of this assessment bank in the
assessment bank hierarchy.

	
Bank.use_isolated_bank_view()

	Isolates the view for methods in this session.
An isolated view restricts lookups to this assessment bank only.

	
Bank.assessment_taken_query

	Gets an assessment taken query.

	Returns:	the assessment taken query

	Return type:	osid.assessment.AssessmentTakenQuery

	
Bank.get_assessments_taken_by_query(assessment_taken_query)

	Gets a list of AssessmentTaken elements matching the given assessment taken query.

	Parameters:	assessment_taken_query (osid.assessment.AssessmentTakenQuery) – the assessment taken query

	Returns:	the returned AssessmentTakenList

	Return type:	osid.assessment.AssessmentTakenList

	Raise:	NullArgument – assessment_taken_query is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – assessment_taken_query is not of this service

Assessment Taken Admin Methods

	
Bank.can_create_assessments_taken()

	Tests if this user can create AssessmentTaken objects.
A return of true does not guarantee successful authoriization. A
return of false indicates that it is known creating an
AssessmentTaken will result in a PermissionDenied. This
is intended as a hint to an application that may opt not to
offer create operations to an unauthorized user.

	Returns:	false if AssessmentTaken creation is not authorized, true otherwise

	Return type:	boolean

	
Bank.can_create_assessment_taken_with_record_types(assessment_taken_record_types)

	Tests if this user can create a single AssessmentTaken using the desired record types.
While AssessmentManager.getAssessmentTakenRecordTypes() can
be used to examine which records are supported, this method
tests which record(s) are required for creating a specific
AssessmentTaken. Providing an empty array tests if an
AssessmentTaken can be created with no records.

	Parameters:	assessment_taken_record_types (osid.type.Type[]) – array of assessment taken record types

	Returns:	true if AssessmentTaken creation using the specified record Types is supported, false otherwise

	Return type:	boolean

	Raise:	NullArgument – assessment_taken_record_types is null

	
Bank.get_assessment_taken_form_for_create(assessment_offered_id, assessment_taken_record_types)

	Gets the assessment taken form for creating new assessments taken.
A new form should be requested for each create transaction.

	Parameters:	
	assessment_offered_id (osid.id.Id) – the Id of the related AssessmentOffered

	assessment_taken_record_types (osid.type.Type[]) – array of assessment taken record types to be included in the create operation or an empty list if none

	Returns:	the assessment taken form

	Return type:	osid.assessment.AssessmentTakenForm

	Raise:	NotFound – assessment_offered_id is not found

	Raise:	NullArgument – assessment_offered_id or assessment_taken_record_types is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – unable to get form for requested record types

	
Bank.create_assessment_taken(assessment_taken_form)

	Creates a new AssessmentTaken.

	Parameters:	assessment_taken_form (osid.assessment.AssessmentTakenForm) – the form for this AssessmentTaken

	Returns:	the new AssessmentTaken

	Return type:	osid.assessment.AssessmentTaken

	Raise:	IllegalState – assessment_taken_form already used in a create transaction

	Raise:	InvalidArgument – one or more of the form elements is invalid

	Raise:	NullArgument – assessment_taken_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – assessment_offered_form did not originate from get_assessment_taken_form_for_create()

	
Bank.can_update_assessments_taken()

	Tests if this user can update AssessmentTaken objects.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known updating an
AssessmentTaken will result in a PermissionDenied. This
is intended as a hint to an application that may opt not to
offer update operations to an unauthorized user.

	Returns:	false if AssessmentTaken modification is not authorized, true otherwise

	Return type:	boolean

	
Bank.get_assessment_taken_form_for_update(assessment_taken_id)

	Gets the assessment taken form for updating an existing assessment taken.
A new assessment taken form should be requested for each update
transaction.

	Parameters:	assessment_taken_id (osid.id.Id) – the Id of the AssessmentTaken

	Returns:	the assessment taken form

	Return type:	osid.assessment.AssessmentTakenForm

	Raise:	NotFound – assessment_taken_id is not found

	Raise:	NullArgument – assessment_taken_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.update_assessment_taken(assessment_taken_form)

	Updates an existing assessment taken.

	Parameters:	assessment_taken_form (osid.assessment.AssessmentTakenForm) – the form containing the elements to be updated

	Raise:	IllegalState – assessment_taken_form already used in an update transaction

	Raise:	InvalidArgument – the form contains an invalid value

	Raise:	NullArgument – assessment_taken_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unsupported – assessment_offered_form did not originate from get_assessment_taken_form_for_update()

	
Bank.can_delete_assessments_taken()

	Tests if this user can delete AssessmentsTaken.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known deleting an
AssessmentTaken will result in a PermissionDenied. This
is intended as a hint to an application that may opt not to
offer a delete operations to unauthorized users.

	Returns:	false if AssessmentTaken deletion is not authorized, true otherwise

	Return type:	boolean

	
Bank.delete_assessment_taken(assessment_taken_id)

	Deletes an AssessmentTaken.

	Parameters:	assessment_taken_id (osid.id.Id) – the Id of the AssessmentTaken to remove

	Raise:	NotFound – assessment_taken_id not found

	Raise:	NullArgument – assessment_taken_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	
Bank.can_manage_assessment_taken_aliases()

	Tests if this user can manage Id aliases for AssessmentsTaken.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known changing an alias
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer alias
operations to an unauthorized user.

	Returns:	false if AssessmentTaken aliasing is not authorized, true otherwise

	Return type:	boolean

	
Bank.alias_assessment_taken(assessment_taken_id, alias_id)

	Adds an Id to an AssessmentTaken for the purpose of creating compatibility.
The primary Id of the AssessmentTaken is determined by
the provider. The new Id is an alias to the primary Id.
If the alias is a pointer to another assessment taken, it is
reassigned to the given assessment taken Id.

	Parameters:	
	assessment_taken_id (osid.id.Id) – the Id of an AssessmentTaken

	alias_id (osid.id.Id) – the alias Id

	Raise:	AlreadyExists – alias_id is in use as a primary Id

	Raise:	NotFound – assessment_taken_id not found

	Raise:	NullArgument – assessment_taken_id or alias_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

Objects

Question

	
class dlkit.assessment.objects.Question

	Bases: dlkit.osid.objects.OsidObject

A Question represents the question portion of an assessment item.

Like all OSID objects, a Question is identified by its Id
and any persisted references should use the Id.

	
get_question_record(question_record_type)

	Gets the item record corresponding to the given Question record Type.

This method is used to retrieve an object implementing the
requested record. The question_record_type may be the
Type returned in get_record_types() or any of its
parents in a Type hierarchy where
has_record_type(question_record_type) is true .

	Parameters:	question_record_type (osid.type.Type) – the type of the record to retrieve

	Returns:	the question record

	Return type:	osid.assessment.records.QuestionRecord

	Raise:	NullArgument – question_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(question_record_type) is false

Question Form

	
class dlkit.assessment.objects.QuestionForm

	Bases: dlkit.osid.objects.OsidObjectForm

This is the form for creating and updating Questions.

	
get_question_form_record(question_record_type)

	Gets the QuestionFormRecord corresponding to the given question record Type.

	Parameters:	question_record_type (osid.type.Type) – the question record type

	Returns:	the question record

	Return type:	osid.assessment.records.QuestionFormRecord

	Raise:	NullArgument – question_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(question_record_type) is false

Question List

	
class dlkit.assessment.objects.QuestionList

	Bases: dlkit.osid.objects.OsidList

Like all OsidLists, QuestionList provides a means for accessing Question elements sequentially either one at a time or many at a time.

Examples: while (ql.hasNext()) { Question question =
ql.getNextQuestion(); }

	or

	
	while (ql.hasNext()) {

	Question[] question = al.getNextQuestions(ql.available());

}

	
next_question

	Gets the next Question in this list.

	Returns:	the next Question in this list. The has_next() method should be used to test that a next Question is available before calling this method.

	Return type:	osid.assessment.Question

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

	
get_next_questions(n)

	Gets the next set of Question elements in this list which must be less than or equal to the number returned from available().

	Parameters:	n (cardinal) – the number of Question elements requested which should be less than or equal to available()

	Returns:	an array of Question elements.The length of the array is less than or equal to the number specified.

	Return type:	osid.assessment.Question

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

Answer

	
class dlkit.assessment.objects.Answer

	Bases: dlkit.osid.objects.OsidObject

An Answer represents the question portion of an assessment item.

Like all OSID objects, an Answer is identified by its Id and
any persisted references should use the Id.

	
get_answer_record(answer_record_type)

	Gets the answer record corresponding to the given Answer record Type.

This method is used to retrieve an object implementing the
requested records. The answer_record_type may be the
Type returned in get_record_types() or any of its
parents in a Type hierarchy where
has_record_type(answer_record_type) is true .

	Parameters:	answer_record_type (osid.type.Type) – the type of the record to retrieve

	Returns:	the answer record

	Return type:	osid.assessment.records.AnswerRecord

	Raise:	NullArgument – answer_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(answer_record_type) is false

Answer Form

	
class dlkit.assessment.objects.AnswerForm

	Bases: dlkit.osid.objects.OsidObjectForm

This is the form for creating and updating Answers.

	
get_answer_form_record(answer_record_type)

	Gets the AnswerFormRecord corresponding to the given answer record Type.

	Parameters:	answer_record_type (osid.type.Type) – the answer record type

	Returns:	the answer record

	Return type:	osid.assessment.records.AnswerFormRecord

	Raise:	NullArgument – answer_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(answer_record_type) is false

Answer List

	
class dlkit.assessment.objects.AnswerList

	Bases: dlkit.osid.objects.OsidList

Like all OsidLists, AnswerList provides a means for accessing Answer elements sequentially either one at a time or many at a time.

Examples: while (al.hasNext()) { Answer answer = al.getNextAnswer();
}

	or

	
	while (al.hasNext()) {

	Answer[] answer = al.getNextAnswers(al.available());

}

	
next_answer

	Gets the next Answer in this list.

	Returns:	the next Answer in this list. The has_next() method should be used to test that a next Answer is available before calling this method.

	Return type:	osid.assessment.Answer

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

	
get_next_answers(n)

	Gets the next set of Answer elements in this list which must be less than or equal to the number returned from available().

	Parameters:	n (cardinal) – the number of Answer elements requested which should be less than or equal to available()

	Returns:	an array of Answer elements.The length of the array is less than or equal to the number specified.

	Return type:	osid.assessment.Answer

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

Item

	
class dlkit.assessment.objects.Item

	Bases: dlkit.osid.objects.OsidObject, dlkit.osid.markers.Aggregateable

An Item represents an individual assessment item such as a question.

Like all OSID objects, a Item is identified by its Id and
any persisted references should use the Id.

An Item is composed of a Question and an Answer.

	
learning_objective_ids

	Gets the Ids of any Objectives corresponding to this item.

	Returns:	the learning objective Ids

	Return type:	osid.id.IdList

	
learning_objectives

	Gets the any Objectives corresponding to this item.

	Returns:	the learning objectives

	Return type:	osid.learning.ObjectiveList

	Raise:	OperationFailed – unable to complete request

	
question_id

	Gets the Id of the Question.

	Returns:	the question Id

	Return type:	osid.id.Id

	
question

	Gets the question.

	Returns:	the question

	Return type:	osid.assessment.Question

	Raise:	OperationFailed – unable to complete request

	
answer_ids

	Gets the Ids of the answers.

Questions may have more than one acceptable answer.

	Returns:	the answer Ids

	Return type:	osid.id.IdList

	
answers

	Gets the answers.

	Returns:	the answers

	Return type:	osid.assessment.AnswerList

	Raise:	OperationFailed – unable to complete request

	
get_item_record(item_record_type)

	Gets the item record corresponding to the given Item record Type.

This method is used to retrieve an object implementing the
requested records. The item_record_type may be the Type
returned in get_record_types() or any of its parents in a
Type hierarchy where has_record_type(item_record_type)
is true .

	Parameters:	item_record_type (osid.type.Type) – the type of the record to retrieve

	Returns:	the item record

	Return type:	osid.assessment.records.ItemRecord

	Raise:	NullArgument – item_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(item_record_type) is false

Item Form

	
class dlkit.assessment.objects.ItemForm

	Bases: dlkit.osid.objects.OsidObjectForm, dlkit.osid.objects.OsidAggregateableForm

This is the form for creating and updating Items.

Like all OsidForm objects, various data elements may be set here
for use in the create and update methods in the
ItemAdminSession. For each data element that may be set,
metadata may be examined to provide display hints or data
constraints.

	
learning_objectives_metadata

	Gets the metadata for learning objectives.

	Returns:	metadata for the learning objectives

	Return type:	osid.Metadata

	
learning_objectives

	Sets the learning objectives.

	Parameters:	objective_ids (osid.id.Id[]) – the learning objective Ids

	Raise:	InvalidArgument – objective_ids is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	
get_item_form_record(item_record_type)

	Gets the ItemnFormRecord corresponding to the given item record Type.

	Parameters:	item_record_type (osid.type.Type) – the item record type

	Returns:	the item record

	Return type:	osid.assessment.records.ItemFormRecord

	Raise:	NullArgument – item_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(item_record_type) is false

Item List

	
class dlkit.assessment.objects.ItemList

	Bases: dlkit.osid.objects.OsidList

Like all OsidLists, ItemList provides a means for accessing Item elements sequentially either one at a time or many at a time.

Examples: while (il.hasNext()) { Item item = il.getNextItem(); }

	or

	
	while (il.hasNext()) {

	Item[] items = il.getNextItems(il.available());

}

	
next_item

	Gets the next Item in this list.

	Returns:	the next Item in this list. The has_next() method should be used to test that a next Item is available before calling this method.

	Return type:	osid.assessment.Item

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

	
get_next_items(n)

	Gets the next set of Item elements in this list which must be less than or equal to the number returned from available().

	Parameters:	n (cardinal) – the number of Item elements requested which should be less than or equal to available()

	Returns:	an array of Item elements.The length of the array is less than or equal to the number specified.

	Return type:	osid.assessment.Item

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

Assessment

	
class dlkit.assessment.objects.Assessment

	Bases: dlkit.osid.objects.OsidObject

An Assessment represents a sequence of assessment items.

Like all OSID objects, an Assessment is identified by its Id
and any persisted references should use the Id.

An Assessment may have an accompanying rubric used for assessing
performance. The rubric assessment is established canonically in
this Assessment.

	
level_id

	Gets the Id of a Grade corresponding to the assessment difficulty.

	Returns:	a grade Id

	Return type:	osid.id.Id

	
level

	Gets the Grade corresponding to the assessment difficulty.

	Returns:	the level

	Return type:	osid.grading.Grade

	Raise:	OperationFailed – unable to complete request

	
has_rubric()

	Tests if a rubric assessment is associated with this assessment.

	Returns:	true if a rubric is available, false otherwise

	Return type:	boolean

	
rubric_id

	Gets the Id of the rubric.

	Returns:	an assessment Id

	Return type:	osid.id.Id

	Raise:	IllegalState – has_rubric() is false

	
rubric

	Gets the rubric.

	Returns:	the assessment

	Return type:	osid.assessment.Assessment

	Raise:	IllegalState – has_rubric() is false

	Raise:	OperationFailed – unable to complete request

	
get_assessment_record(assessment_record_type)

	Gets the assessment record corresponding to the given Assessment record Type.

This method is used to retrieve an object implementing the
requested record. The assessment_record_type may be the
Type returned in get_record_types() or any of its
parents in a Type hierarchy where
has_record_type(assessment_record_type) is true .

	Parameters:	assessment_record_type (osid.type.Type) – the type of the record to retrieve

	Returns:	the assessment record

	Return type:	osid.assessment.records.AssessmentRecord

	Raise:	NullArgument – assessment_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(assessment_record_type) is false

Assessment Form

	
class dlkit.assessment.objects.AssessmentForm

	Bases: dlkit.osid.objects.OsidObjectForm

This is the form for creating and updating Assessments.

Like all OsidForm objects, various data elements may be set here
for use in the create and update methods in the
AssessmentAdminSession. For each data element that may be set,
metadata may be examined to provide display hints or data
constraints.

	
level_metadata

	Gets the metadata for a grade level.

	Returns:	metadata for the grade level

	Return type:	osid.Metadata

	
level

	Sets the level of difficulty expressed as a Grade.

	Parameters:	grade_id (osid.id.Id) – the grade level

	Raise:	InvalidArgument – grade_id is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – grade_id is null

	
rubric_metadata

	Gets the metadata for a rubric assessment.

	Returns:	metadata for the assesment

	Return type:	osid.Metadata

	
rubric

	Sets the rubric expressed as another assessment.

	Parameters:	assessment_id (osid.id.Id) – the assessment Id

	Raise:	InvalidArgument – assessment_id is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – assessment_id is null

	
get_assessment_form_record(assessment_record_type)

	Gets the AssessmentFormRecord corresponding to the given assessment record Type.

	Parameters:	assessment_record_type (osid.type.Type) – the assessment record type

	Returns:	the assessment record

	Return type:	osid.assessment.records.AssessmentFormRecord

	Raise:	NullArgument – assessment_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(assessment_record_type) is false

Assessment List

	
class dlkit.assessment.objects.AssessmentList

	Bases: dlkit.osid.objects.OsidList

Like all OsidLists, AssessmentList provides a means for accessing Assessment elements sequentially either one at a time or many at a time.

Examples: while (al.hasNext()) { Assessment assessment =
al.getNextAssessment(); }

	or

	
	while (al.hasNext()) {

	Assessment[] assessments = al.hetNextAssessments(al.available());

}

	
next_assessment

	Gets the next Assessment in this list.

	Returns:	the next Assessment in this list. The has_next() method should be used to test that a next Assessment is available before calling this method.

	Return type:	osid.assessment.Assessment

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

	
get_next_assessments(n)

	Gets the next set of Assessment elements in this list which must be less than or equal to the number returned from available().

	Parameters:	n (cardinal) – the number of Assessment elements requested which should be less than or equal to available()

	Returns:	an array of Assessment elements.The length of the array is less than or equal to the number specified.

	Return type:	osid.assessment.Assessment

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

Assessment Offered

	
class dlkit.assessment.objects.AssessmentOffered

	Bases: dlkit.osid.objects.OsidObject, dlkit.osid.markers.Subjugateable

An AssessmentOffered represents a sequence of assessment items.

Like all OSID objects, an AssessmentOffered is identified by its
Id and any persisted references should use the Id.

	
assessment_id

	Gets the assessment Id corresponding to this assessment offering.

	Returns:	the assessment id

	Return type:	osid.id.Id

	
assessment

	Gets the assessment corresponding to this assessment offereng.

	Returns:	the assessment

	Return type:	osid.assessment.Assessment

	Raise:	OperationFailed – unable to complete request

	
level_id

	Gets the Id of a Grade corresponding to the assessment difficulty.

	Returns:	a grade id

	Return type:	osid.id.Id

	
level

	Gets the Grade corresponding to the assessment difficulty.

	Returns:	the level

	Return type:	osid.grading.Grade

	Raise:	OperationFailed – unable to complete request

	
are_items_sequential()

	Tests if the items or parts in this assessment are taken sequentially.

	Returns:	true if the items are taken sequentially, false if the items can be skipped and revisited

	Return type:	boolean

	
are_items_shuffled()

	Tests if the items or parts appear in a random order.

	Returns:	true if the items appear in a random order, false otherwise

	Return type:	boolean

	
has_start_time()

	Tests if there is a fixed start time for this assessment.

	Returns:	true if there is a fixed start time, false otherwise

	Return type:	boolean

	
start_time

	Gets the start time for this assessment.

	Returns:	the designated start time

	Return type:	osid.calendaring.DateTime

	Raise:	IllegalState – has_start_time() is false

	
has_deadline()

	Tests if there is a fixed end time for this assessment.

	Returns:	true if there is a fixed end time, false otherwise

	Return type:	boolean

	
deadline

	Gets the end time for this assessment.

	Returns:	the designated end time

	Return type:	osid.calendaring.DateTime

	Raise:	IllegalState – has_deadline() is false

	
has_duration()

	Tests if there is a fixed duration for this assessment.

	Returns:	true if there is a fixed duration, false otherwise

	Return type:	boolean

	
duration

	Gets the duration for this assessment.

	Returns:	the duration

	Return type:	osid.calendaring.Duration

	Raise:	IllegalState – has_duration() is false

	
is_scored()

	Tests if this assessment will be scored.

	Returns:	true if this assessment will be scored false otherwise

	Return type:	boolean

	
score_system_id

	Gets the grade system Id for the score.

	Returns:	the grade system Id

	Return type:	osid.id.Id

	Raise:	IllegalState – is_scored() is false

	
score_system

	Gets the grade system for the score.

	Returns:	the grade system

	Return type:	osid.grading.GradeSystem

	Raise:	IllegalState – is_scored() is false

	Raise:	OperationFailed – unable to complete request

	
is_graded()

	Tests if this assessment will be graded.

	Returns:	true if this assessment will be graded, false otherwise

	Return type:	boolean

	
grade_system_id

	Gets the grade system Id for the grade.

	Returns:	the grade system Id

	Return type:	osid.id.Id

	Raise:	IllegalState – is_graded() is false

	
grade_system

	Gets the grade system for the grade.

	Returns:	the grade system

	Return type:	osid.grading.GradeSystem

	Raise:	IllegalState – is_graded() is false

	Raise:	OperationFailed – unable to complete request

	
has_rubric()

	Tests if a rubric assessment is associated with this assessment.

	Returns:	true if a rubric is available, false otherwise

	Return type:	boolean

	
rubric_id

	Gets the Id of the rubric.

	Returns:	an assessment offered Id

	Return type:	osid.id.Id

	Raise:	IllegalState – has_rubric() is false

	
rubric

	Gets the rubric.

	Returns:	the assessment offered

	Return type:	osid.assessment.AssessmentOffered

	Raise:	IllegalState – has_rubric() is false

	Raise:	OperationFailed – unable to complete request

	
get_assessment_offered_record(assessment_taken_record_type)

	Gets the assessment offered record corresponding to the given AssessmentOffered record Type.

This method is used to retrieve an object implementing the
requested record. The assessment_offered_record_type may be
the Type returned in get_record_types() or any of its
parents in a Type hierarchy where
has_record_type(assessment_offered_record_type) is true
.

	Parameters:	assessment_taken_record_type (osid.type.Type) – an assessment offered record type

	Returns:	the assessment offered record

	Return type:	osid.assessment.records.AssessmentOfferedRecord

	Raise:	NullArgument – assessment_offered_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(assessment_offered_record_type) is false

Assessment Offered Form

	
class dlkit.assessment.objects.AssessmentOfferedForm

	Bases: dlkit.osid.objects.OsidObjectForm, dlkit.osid.objects.OsidSubjugateableForm

This is the form for creating and updating an AssessmentOffered.

Like all OsidForm objects, various data elements may be set here
for use in the create and update methods in the
AssessmentOfferedAdminSession. For each data element that may be
set, metadata may be examined to provide display hints or data
constraints.

	
level_metadata

	Gets the metadata for a grade level.

	Returns:	metadata for the grade level

	Return type:	osid.Metadata

	
level

	Sets the level of difficulty expressed as a Grade.

	Parameters:	grade_id (osid.id.Id) – the grade level

	Raise:	InvalidArgument – grade_id is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	
items_sequential_metadata

	Gets the metadata for sequential operation.

	Returns:	metadata for the sequential flag

	Return type:	osid.Metadata

	
items_sequential

	Sets the items sequential flag.

	Parameters:	sequential (boolean) – true if the items are taken sequentially, false if the items can be skipped and revisited

	Raise:	InvalidArgument – sequential is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	
items_shuffled_metadata

	Gets the metadata for shuffling items.

	Returns:	metadata for the shuffled flag

	Return type:	osid.Metadata

	
items_shuffled

	Sets the shuffle flag.

The shuffle flag may be overidden by other assessment sequencing
rules.

	Parameters:	shuffle (boolean) – true if the items are shuffled, false if the items appear in the designated order

	Raise:	InvalidArgument – shuffle is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	
start_time_metadata

	Gets the metadata for the assessment start time.

	Returns:	metadata for the start time

	Return type:	osid.Metadata

	
start_time

	Sets the assessment start time.

	Parameters:	start (osid.calendaring.DateTime) – assessment start time

	Raise:	InvalidArgument – start is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	
deadline_metadata

	Gets the metadata for the assessment deadline.

	Returns:	metadata for the end time

	Return type:	osid.Metadata

	
deadline

	Sets the assessment end time.

	Parameters:	end (timestamp) – assessment end time

	Raise:	InvalidArgument – end is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	
duration_metadata

	Gets the metadata for the assessment duration.

	Returns:	metadata for the duration

	Return type:	osid.Metadata

	
duration

	Sets the assessment duration.

	Parameters:	duration (osid.calendaring.Duration) – assessment duration

	Raise:	InvalidArgument – duration is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	
score_system_metadata

	Gets the metadata for a score system.

	Returns:	metadata for the grade system

	Return type:	osid.Metadata

	
score_system

	Sets the scoring system.

	Parameters:	grade_system_id (osid.id.Id) – the grade system

	Raise:	InvalidArgument – grade_system_id is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	
grade_system_metadata

	Gets the metadata for a grading system.

	Returns:	metadata for the grade system

	Return type:	osid.Metadata

	
grade_system

	Sets the grading system.

	Parameters:	grade_system_id (osid.id.Id) – the grade system

	Raise:	InvalidArgument – grade_system_id is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	
get_assessment_offered_form_record(assessment_offered_record_type)

	Gets the AssessmentOfferedFormRecord corresponding to the given assessment record Type.

	Parameters:	assessment_offered_record_type (osid.type.Type) – the assessment offered record type

	Returns:	the assessment offered record

	Return type:	osid.assessment.records.AssessmentOfferedFormRecord

	Raise:	NullArgument – assessment_offered_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(assessment_offered_record_type) is false

Assessment Offered List

	
class dlkit.assessment.objects.AssessmentOfferedList

	Bases: dlkit.osid.objects.OsidList

Like all OsidLists, AssessmentOfferedList provides a means for accessing AssessmentTaken elements sequentially either one at a time or many at a time.

Examples: while (aol.hasNext()) { AssessmentOffered assessment =
aol.getNextAssessmentOffered();

	or

	
	while (aol.hasNext()) {

	AssessmentOffered[] assessments = aol.hetNextAssessmentsOffered(aol.available());

}

	
next_assessment_offered

	Gets the next AssessmentOffered in this list.

	Returns:	the next AssessmentOffered in this list. The has_next() method should be used to test that a next AssessmentOffered is available before calling this method.

	Return type:	osid.assessment.AssessmentOffered

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

	
get_next_assessments_offered(n)

	Gets the next set of AssessmentOffered elements in this list which must be less than or equal to the number returned from available().

	Parameters:	n (cardinal) – the number of AssessmentOffered elements requested which should be less than or equal to available()

	Returns:	an array of AssessmentOffered elements.The length of the array is less than or equal to the number specified.

	Return type:	osid.assessment.AssessmentOffered

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

Assessment Taken

	
class dlkit.assessment.objects.AssessmentTaken

	Bases: dlkit.osid.objects.OsidObject

Represents a taken assessment or an assessment in progress.

	
assessment_offered_id

	Gets the Id of the AssessmentOffered.

	Returns:	the assessment offered Id

	Return type:	osid.id.Id

	
assessment_offered

	Gets the AssessmentOffered.

	Returns:	the assessment offered

	Return type:	osid.assessment.AssessmentOffered

	Raise:	OperationFailed – unable to complete request

	
taker_id

	Gets the Id of the resource who took or is taking this assessment.

	Returns:	the resource Id

	Return type:	osid.id.Id

	
taker

	Gets the Resource taking this assessment.

	Returns:	the resource

	Return type:	osid.resource.Resource

	Raise:	OperationFailed – unable to complete request

	
taking_agent_id

	Gets the Id of the Agent who took or is taking the assessment.

	Returns:	the agent Id

	Return type:	osid.id.Id

	
taking_agent

	Gets the Agent.

	Returns:	the agent

	Return type:	osid.authentication.Agent

	Raise:	OperationFailed – unable to complete request

	
has_started()

	Tests if this assessment has begun.

	Returns:	true if the assessment has begun, false otherwise

	Return type:	boolean

	
actual_start_time

	Gets the time this assessment was started.

	Returns:	the start time

	Return type:	osid.calendaring.DateTime

	Raise:	IllegalState – has_started() is false

	
has_ended()

	Tests if this assessment has ended.

	Returns:	true if the assessment has ended, false otherwise

	Return type:	boolean

	
completion_time

	Gets the time of this assessment was completed.

	Returns:	the end time

	Return type:	osid.calendaring.DateTime

	Raise:	IllegalState – has_ended() is false

	
time_spent

	Gets the total time spent taking this assessment.

	Returns:	the total time spent

	Return type:	osid.calendaring.Duration

	
completion

	Gets a completion percentage of the assessment.

	Returns:	the percent complete (0-100)

	Return type:	cardinal

	
is_scored()

	Tests if a score is available for this assessment.

	Returns:	true if a score is available, false otherwise

	Return type:	boolean

	
score_system_id

	Gets a score system Id for the assessment.

	Returns:	the grade system

	Return type:	osid.id.Id

	Raise:	IllegalState – is_score() is false

	
score_system

	Gets a grade system for the score.

	Returns:	the grade system

	Return type:	osid.grading.GradeSystem

	Raise:	IllegalState – is_scored() is false

	Raise:	OperationFailed – unable to complete request

	
score

	Gets a score for the assessment.

	Returns:	the score

	Return type:	decimal

	Raise:	IllegalState – is_scored() is false

	
is_graded()

	Tests if a grade is available for this assessment.

	Returns:	true if a grade is available, false otherwise

	Return type:	boolean

	
grade_id

	Gets a grade Id for the assessment.

	Returns:	the grade

	Return type:	osid.id.Id

	Raise:	IllegalState – is_graded() is false

	
grade

	Gets a grade for the assessment.

	Returns:	the grade

	Return type:	osid.grading.Grade

	Raise:	IllegalState – is_graded() is false

	Raise:	OperationFailed – unable to complete request

	
feedback

	Gets any overall comments available for this assessment by the grader.

	Returns:	comments

	Return type:	osid.locale.DisplayText

	
has_rubric()

	Tests if a rubric assessment is associated with this assessment.

	Returns:	true if a rubric is available, false otherwise

	Return type:	boolean

	
rubric_id

	Gets the Id of the rubric.

	Returns:	an assessment taken Id

	Return type:	osid.id.Id

	Raise:	IllegalState – has_rubric() is false

	
rubric

	Gets the rubric.

	Returns:	the assessment taken

	Return type:	osid.assessment.AssessmentTaken

	Raise:	IllegalState – has_rubric() is false

	Raise:	OperationFailed – unable to complete request

	
get_assessment_taken_record(assessment_taken_record_type)

	Gets the assessment taken record corresponding to the given AssessmentTaken record Type.

This method is used to retrieve an object implementing the
requested record. The assessment_taken_record_type may be
the Type returned in get_record_types() or any of its
parents in a Type hierarchy where
has_record_type(assessment_taken_record_type) is true .

	Parameters:	assessment_taken_record_type (osid.type.Type) – an assessment taken record type

	Returns:	the assessment taken record

	Return type:	osid.assessment.records.AssessmentTakenRecord

	Raise:	NullArgument – assessment_taken_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(assessment_taken_record_type) is false

Assessment Taken Form

	
class dlkit.assessment.objects.AssessmentTakenForm

	Bases: dlkit.osid.objects.OsidObjectForm

This is the form for creating and updating an AssessmentTaken.

Like all OsidForm objects, various data elements may be set here
for use in the create and update methods in the
AssessmentTakenAdminSession. For each data element that may be
set, metadata may be examined to provide display hints or data
constraints.

	
taker_metadata

	Gets the metadata for a resource to manually set which resource will be taking the assessment.

	Returns:	metadata for the resource

	Return type:	osid.Metadata

	
taker

	Sets the resource who will be taking this assessment.

	Parameters:	resource_id (osid.id.Id) – the resource Id

	Raise:	InvalidArgument – resource_id is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	
get_assessment_taken_form_record(assessment_taken_record_type)

	Gets the AssessmentTakenFormRecord corresponding to the given assessment taken record Type.

	Parameters:	assessment_taken_record_type (osid.type.Type) – the assessment taken record type

	Returns:	the assessment taken record

	Return type:	osid.assessment.records.AssessmentTakenFormRecord

	Raise:	NullArgument – assessment_taken_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(assessment_taken_record_type) is false

Assessment Taken List

	
class dlkit.assessment.objects.AssessmentTakenList

	Bases: dlkit.osid.objects.OsidList

Like all OsidLists, AssessmentTakenList provides a means for accessing AssessmentTaken elements sequentially either one at a time or many at a time.

Examples: while (atl.hasNext()) { AssessmentTaken assessment =
atl.getNextAssessmentTaken();

	or

	
	while (atl.hasNext()) {

	AssessmentTaken[] assessments = atl.hetNextAssessmentsTaken(atl.available());

}

	
next_assessment_taken

	Gets the next AssessmentTaken in this list.

	Returns:	the next AssessmentTaken in this list. The has_next() method should be used to test that a next AssessmentTaken is available before calling this method.

	Return type:	osid.assessment.AssessmentTaken

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

	
get_next_assessments_taken(n)

	Gets the next set of AssessmentTaken elements in this list which must be less than or equal to the number returned from available().

	Parameters:	n (cardinal) – the number of AssessmentTaken elements requested which should be less than or equal to available()

	Returns:	an array of AssessmentTaken elements.The length of the array is less than or equal to the number specified.

	Return type:	osid.assessment.AssessmentTaken

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

Assessment Section

	
class dlkit.assessment.objects.AssessmentSection

	Bases: dlkit.osid.objects.OsidObject

Represents an assessment section.

An assessment section represents a cluster of questions used to
organize the execution of an assessment. The section is the student
aspect of an assessment part.

	
assessment_taken_id

	Gets the Id of the AssessmentTaken.

	Returns:	the assessment taken Id

	Return type:	osid.id.Id

	
assessment_taken

	Gets the AssessmentTakeb.

	Returns:	the assessment taken

	Return type:	osid.assessment.AssessmentTaken

	Raise:	OperationFailed – unable to complete request

	
has_allocated_time()

	Tests if this section must be completed within an allocated time.

	Returns:	true if this section has an allocated time, false otherwise

	Return type:	boolean

	
allocated_time

	Gets the allocated time for this section.

	Returns:	allocated time

	Return type:	osid.calendaring.Duration

	Raise:	IllegalState – has_allocated_time() is false

	
are_items_sequential()

	Tests if the items or parts in this section are taken sequentially.

	Returns:	true if the items are taken sequentially, false if the items can be skipped and revisited

	Return type:	boolean

	
are_items_shuffled()

	Tests if the items or parts appear in a random order.

	Returns:	true if the items appear in a random order, false otherwise

	Return type:	boolean

	
get_assessment_section_record(assessment_section_record_type)

	Gets the assessment section record corresponding to the given AssessmentSection record Type.

This method is used to retrieve an object implementing the
requested record. The assessment_section_record_type may be
the Type returned in get_record_types() or any of its
parents in a Type hierarchy where
has_record_type(assessment_section_record_type) is true
.

	Parameters:	assessment_section_record_type (osid.type.Type) – an assessment section record type

	Returns:	the assessment section record

	Return type:	osid.assessment.records.AssessmentSectionRecord

	Raise:	NullArgument – assessment_section_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(assessment_section_record_type) is false

Assessment Section List

	
class dlkit.assessment.objects.AssessmentSectionList

	Bases: dlkit.osid.objects.OsidList

Like all OsidLists, AssessmentSectionList provides a means for accessing AssessmentSection elements sequentially either one at a time or many at a time.

Examples: while (asl.hasNext()) { AssessmentSection section =
asl.getNextAssessmentSection();

	or

	
	while (asl.hasNext()) {

	AssessmentSection[] sections = asl.hetNextAssessmentSections(asl.available());

}

	
next_assessment_section

	Gets the next AssessmentSection in this list.

	Returns:	the next AssessmentSection in this list. The has_next() method should be used to test that a next AssessmentSection is available before calling this method.

	Return type:	osid.assessment.AssessmentSection

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

	
get_next_assessment_sections(n)

	Gets the next set of AssessmentSection elements in this list which must be less than or equal to the number returned from available().

	Parameters:	n (cardinal) – the number of AssessmentSection elements requested which should be less than or equal to available()

	Returns:	an array of AssessmentSection elements.The length of the array is less than or equal to the number specified.

	Return type:	osid.assessment.AssessmentSection

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

Bank Form

	
class dlkit.assessment.objects.BankForm

	Bases: dlkit.osid.objects.OsidCatalogForm

This is the form for creating and updating banks.

Like all OsidForm objects, various data elements may be set here
for use in the create and update methods in the
BankAdminSession. For each data element that may be set,
metadata may be examined to provide display hints or data
constraints.

	
get_bank_form_record(bank_record_type)

	Gets the BankFormRecord corresponding to the given bank record Type.

	Parameters:	bank_record_type (osid.type.Type) – a bank record type

	Returns:	the bank record

	Return type:	osid.assessment.records.BankFormRecord

	Raise:	NullArgument – bank_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(bank_record_type) is false

Bank List

	
class dlkit.assessment.objects.BankList

	Bases: dlkit.osid.objects.OsidList

Like all OsidLists, BankList provides a means for accessing Bank elements sequentially either one at a time or many at a time.

Examples: while (bl.hasNext()) { Bank bank = bl.getNextBank(); }

	or

	
	while (bl.hasNext()) {

	Bank[] banks = bl.getNextBanks(bl.available());

}

	
next_bank

	Gets the next Bank in this list.

	Returns:	the next Bank in this list. The has_next() method should be used to test that a next Bank is available before calling this method.

	Return type:	osid.assessment.Bank

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

	
get_next_banks(n)

	Gets the next set of Bank elements in this list which must be less than or equal to the return from available().

	Parameters:	n (cardinal) – the number of Bank elements requested which must be less than or equal to available()

	Returns:	an array of Bank elements.The length of the array is less than or equal to the number specified.

	Return type:	osid.assessment.Bank

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

Response List

	
class dlkit.assessment.objects.ResponseList

	Bases: dlkit.osid.objects.OsidList

Like all OsidLists, ResponseList provides a means for accessing Response elements sequentially either one at a time or many at a time.

Examples: while (rl.hasNext()) { Response response =
rl.getNextResponse(); }

	or

	
	while (rl.hasNext()) {

	Response[] responses = rl.getNextResponses(rl.available());

}

	
next_response

	Gets the next Response in this list.

	Returns:	the next Response in this list. The has_next() method should be used to test that a next Response is available before calling this method.

	Return type:	osid.assessment.Response

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

	
get_next_responses(n)

	Gets the next set of Response elements in this list which must be less than or equal to the return from available().

	Parameters:	n (cardinal) – the number of Response elements requested which must be less than or equal to available()

	Returns:	an array of Response elements.The length of the array is less than or equal to the number specified.

	Return type:	osid.assessment.Response

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

Queries

Question Query

	
class dlkit.assessment.queries.QuestionQuery

	Bases: dlkit.osid.queries.OsidObjectQuery

This is the query for searching questions.

Each method match request produces an AND term while multiple
invocations of a method produces a nested OR.

	
get_question_query_record(question_record_type)

	Gets the question record query corresponding to the given Item record Type.

Multiple retrievals produce a nested OR term.

	Parameters:	question_record_type (osid.type.Type) – a question record type

	Returns:	the question query record

	Return type:	osid.assessment.records.QuestionQueryRecord

	Raise:	NullArgument – question_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(question_record_type) is false

Answer Query

	
class dlkit.assessment.queries.AnswerQuery

	Bases: dlkit.osid.queries.OsidObjectQuery

This is the query for searching answers.

Each method match request produces an AND term while multiple
invocations of a method produces a nested OR.

	
get_answer_query_record(answer_record_type)

	Gets the answer record query corresponding to the given Answer record Type.

Multiple retrievals produce a nested OR term.

	Parameters:	answer_record_type (osid.type.Type) – an answer record type

	Returns:	the answer query record

	Return type:	osid.assessment.records.AnswerQueryRecord

	Raise:	NullArgument – answer_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(answer_record_type) is false

Item Query

	
class dlkit.assessment.queries.ItemQuery

	Bases: dlkit.osid.queries.OsidObjectQuery, dlkit.osid.queries.OsidAggregateableQuery

This is the query for searching items.

Each method match request produces an AND term while multiple
invocations of a method produces a nested OR.

	
match_learning_objective_id(objective_id, match)

	Sets the learning objective Id for this query.

	Parameters:	
	objective_id (osid.id.Id) – a learning objective Id

	match (boolean) – true for a positive match, false for negative match

	Raise:	NullArgument – objective_id is null

	
learning_objective_id_terms

	

	
supports_learning_objective_query()

	Tests if an ObjectiveQuery is available.

	Returns:	true if a learning objective query is available, false otherwise

	Return type:	boolean

	
learning_objective_query

	Gets the query for a learning objective.

Multiple retrievals produce a nested OR term.

	Returns:	the learning objective query

	Return type:	osid.learning.ObjectiveQuery

	Raise:	Unimplemented – supports_learning_objective_query() is false

	
match_any_learning_objective(match)

	Matches an item with any objective.

	Parameters:	match (boolean) – true to match items with any learning objective, false to match items with no learning objectives

	
learning_objective_terms

	

	
match_question_id(question_id, match)

	Sets the question Id for this query.

	Parameters:	
	question_id (osid.id.Id) – a question Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – question_id is null

	
question_id_terms

	

	
supports_question_query()

	Tests if a QuestionQuery is available.

	Returns:	true if a question query is available, false otherwise

	Return type:	boolean

	
question_query

	Gets the query for a question.

Multiple retrievals produce a nested OR term.

	Returns:	the question query

	Return type:	osid.assessment.QuestionQuery

	Raise:	Unimplemented – supports_question_query() is false

	
match_any_question(match)

	Matches an item with any question.

	Parameters:	match (boolean) – true to match items with any question, false to match items with no questions

	
question_terms

	

	
match_answer_id(answer_id, match)

	Sets the answer Id for this query.

	Parameters:	
	answer_id (osid.id.Id) – an answer Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – answer_id is null

	
answer_id_terms

	

	
supports_answer_query()

	Tests if an AnswerQuery is available.

	Returns:	true if an answer query is available, false otherwise

	Return type:	boolean

	
answer_query

	Gets the query for an answer.

Multiple retrievals produce a nested OR term.

	Returns:	the answer query

	Return type:	osid.assessment.AnswerQuery

	Raise:	Unimplemented – supports_answer_query() is false

	
match_any_answer(match)

	Matches an item with any answer.

	Parameters:	match (boolean) – true to match items with any answer, false to match items with no answers

	
answer_terms

	

	
match_assessment_id(assessment_id, match)

	Sets the assessment Id for this query.

	Parameters:	
	assessment_id (osid.id.Id) – an assessment Id

	match (boolean) – true for a positive match, false for negative match

	Raise:	NullArgument – assessment_id is null

	
assessment_id_terms

	

	
supports_assessment_query()

	Tests if an AssessmentQuery is available.

	Returns:	true if an assessment query is available, false otherwise

	Return type:	boolean

	
assessment_query

	Gets the query for an assessment.

Multiple retrievals produce a nested OR term.

	Returns:	the assessment query

	Return type:	osid.assessment.AssessmentQuery

	Raise:	Unimplemented – supports_assessment_query() is false

	
match_any_assessment(match)

	Matches an item with any assessment.

	Parameters:	match (boolean) – true to match items with any assessment, false to match items with no assessments

	
assessment_terms

	

	
match_bank_id(bank_id, match)

	Sets the bank Id for this query.

	Parameters:	
	bank_id (osid.id.Id) – a bank Id

	match (boolean) – true for a positive match, false for negative match

	Raise:	NullArgument – bank_id is null

	
bank_id_terms

	

	
supports_bank_query()

	Tests if a BankQuery is available.

	Returns:	true if a bank query is available, false otherwise

	Return type:	boolean

	
bank_query

	Gets the query for a bank.

Multiple retrievals produce a nested OR term.

	Returns:	the bank query

	Return type:	osid.assessment.BankQuery

	Raise:	Unimplemented – supports_bank_query() is false

	
bank_terms

	

	
get_item_query_record(item_record_type)

	Gets the item record query corresponding to the given Item record Type.

Multiple retrievals produce a nested OR term.

	Parameters:	item_record_type (osid.type.Type) – an item record type

	Returns:	the item query record

	Return type:	osid.assessment.records.ItemQueryRecord

	Raise:	NullArgument – item_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(item_record_type) is false

Assessment Query

	
class dlkit.assessment.queries.AssessmentQuery

	Bases: dlkit.osid.queries.OsidObjectQuery

This is the query for searching assessments.

Each method match request produces an AND term while multiple
invocations of a method produces a nested OR.

	
match_level_id(grade_id, match)

	Sets the level grade Id for this query.

	Parameters:	
	grade_id (osid.id.Id) – a grade Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – grade_id is null

	
level_id_terms

	

	
supports_level_query()

	Tests if a GradeQuery is available.

	Returns:	true if a grade query is available, false otherwise

	Return type:	boolean

	
level_query

	Gets the query for a grade.

Multiple retrievals produce a nested OR term.

	Returns:	the grade query

	Return type:	osid.grading.GradeQuery

	Raise:	Unimplemented – supports_level_query() is false

	
match_any_level(match)

	Matches an assessment that has any level assigned.

	Parameters:	match (boolean) – true to match assessments with any level, false to match assessments with no level

	
level_terms

	

	
match_rubric_id(assessment_id, match)

	Sets the rubric assessment Id for this query.

	Parameters:	
	assessment_id (osid.id.Id) – an assessment Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – assessment_id is null

	
rubric_id_terms

	

	
supports_rubric_query()

	Tests if an AssessmentQuery is available.

	Returns:	true if a rubric assessment query is available, false otherwise

	Return type:	boolean

	
rubric_query

	Gets the query for a rubric assessment.

Multiple retrievals produce a nested OR term.

	Returns:	the assessment query

	Return type:	osid.assessment.AssessmentQuery

	Raise:	Unimplemented – supports_rubric_query() is false

	
match_any_rubric(match)

	Matches an assessment that has any rubric assessment assigned.

	Parameters:	match (boolean) – true to match assessments with any rubric, false to match assessments with no rubric

	
rubric_terms

	

	
match_item_id(item_id, match)

	Sets the item Id for this query.

	Parameters:	
	item_id (osid.id.Id) – an item Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – item_id is null

	
item_id_terms

	

	
supports_item_query()

	Tests if an ItemQuery is available.

	Returns:	true if an item query is available, false otherwise

	Return type:	boolean

	
item_query

	Gets the query for an item.

Multiple retrievals produce a nested OR term.

	Returns:	the item query

	Return type:	osid.assessment.ItemQuery

	Raise:	Unimplemented – supports_item_query() is false

	
match_any_item(match)

	Matches an assessment that has any item.

	Parameters:	match (boolean) – true to match assessments with any item, false to match assessments with no items

	
item_terms

	

	
match_assessment_offered_id(assessment_offered_id, match)

	Sets the assessment offered Id for this query.

	Parameters:	
	assessment_offered_id (osid.id.Id) – an assessment offered Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – assessment_offered_id is null

	
assessment_offered_id_terms

	

	
supports_assessment_offered_query()

	Tests if an AssessmentOfferedQuery is available.

	Returns:	true if an assessment offered query is available, false otherwise

	Return type:	boolean

	
assessment_offered_query

	Gets the query for an assessment offered.

Multiple retrievals produce a nested OR term.

	Returns:	the assessment offered query

	Return type:	osid.assessment.AssessmentOfferedQuery

	Raise:	Unimplemented – supports_assessment_offered_query() is false

	
match_any_assessment_offered(match)

	Matches an assessment that has any offering.

	Parameters:	match (boolean) – true to match assessments with any offering, false to match assessments with no offerings

	
assessment_offered_terms

	

	
match_assessment_taken_id(assessment_taken_id, match)

	Sets the assessment taken Id for this query.

	Parameters:	
	assessment_taken_id (osid.id.Id) – an assessment taken Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – assessment_taken_id is null

	
assessment_taken_id_terms

	

	
supports_assessment_taken_query()

	Tests if an AssessmentTakenQuery is available.

	Returns:	true if an assessment taken query is available, false otherwise

	Return type:	boolean

	
assessment_taken_query

	Gets the query for an assessment taken.

Multiple retrievals produce a nested OR term.

	Returns:	the assessment taken query

	Return type:	osid.assessment.AssessmentTakenQuery

	Raise:	Unimplemented – supports_assessment_taken_query() is false

	
match_any_assessment_taken(match)

	Matches an assessment that has any taken version.

	Parameters:	match (boolean) – true to match assessments with any taken assessments, false to match assessments with no taken assessments

	
assessment_taken_terms

	

	
match_bank_id(bank_id, match)

	Sets the bank Id for this query.

	Parameters:	
	bank_id (osid.id.Id) – a bank Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – bank_id is null

	
bank_id_terms

	

	
supports_bank_query()

	Tests if a BankQuery is available.

	Returns:	true if a bank query is available, false otherwise

	Return type:	boolean

	
bank_query

	Gets the query for a bank.

Multiple retrievals produce a nested OR term.

	Returns:	the bank query

	Return type:	osid.assessment.BankQuery

	Raise:	Unimplemented – supports_bank_query() is false

	
bank_terms

	

	
get_assessment_query_record(assessment_record_type)

	Gets the assessment query record corresponding to the given Assessment record Type.

Multiple retrievals produce a nested OR term.

	Parameters:	assessment_record_type (osid.type.Type) – an assessment record type

	Returns:	the assessment query record

	Return type:	osid.assessment.records.AssessmentQueryRecord

	Raise:	NullArgument – assessment_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(assessment_record_type) is false

Assessment Offered Query

	
class dlkit.assessment.queries.AssessmentOfferedQuery

	Bases: dlkit.osid.queries.OsidObjectQuery, dlkit.osid.queries.OsidSubjugateableQuery

This is the query for searching assessments.

Each method match request produces an AND term while multiple
invocations of a method produces a nested OR.

	
match_assessment_id(assessment_id, match)

	Sets the assessment Id for this query.

	Parameters:	
	assessment_id (osid.id.Id) – an assessment Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – assessment_id is null

	
assessment_id_terms

	

	
supports_assessment_query()

	Tests if an AssessmentQuery is available.

	Returns:	true if an assessment query is available, false otherwise

	Return type:	boolean

	
assessment_query

	Gets the query for an assessment.

Multiple retrievals produce a nested OR term.

	Returns:	the assessment query

	Return type:	osid.assessment.AssessmentQuery

	Raise:	Unimplemented – supports_assessment_query() is false

	
assessment_terms

	

	
match_level_id(grade_id, match)

	Sets the level grade Id for this query.

	Parameters:	
	grade_id (osid.id.Id) – a grade Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – grade_id is null

	
level_id_terms

	

	
supports_level_query()

	Tests if a GradeQuery is available.

	Returns:	true if a grade query is available, false otherwise

	Return type:	boolean

	
level_query

	Gets the query for a grade.

Multiple retrievals produce a nested OR term.

	Returns:	the grade query

	Return type:	osid.grading.GradeQuery

	Raise:	Unimplemented – supports_level_query() is false

	
match_any_level(match)

	Matches an assessment offered that has any level assigned.

	Parameters:	match (boolean) – true to match offerings with any level, false to match offerings with no levsls

	
level_terms

	

	
match_items_sequential(match)

	Match sequential assessments.

	Parameters:	match (boolean) – true for a positive match, false for a negative match

	
items_sequential_terms

	

	
match_items_shuffled(match)

	Match shuffled item assessments.

	Parameters:	match (boolean) – true for a positive match, false for a negative match

	
items_shuffled_terms

	

	
match_start_time(start, end, match)

	Matches assessments whose start time falls between the specified range inclusive.

	Parameters:	
	start (osid.calendaring.DateTime) – start of range

	end (osid.calendaring.DateTime) – end of range

	match (boolean) – true for a positive match, false for a negative match

	Raise:	InvalidArgument – end is less than start

	
match_any_start_time(match)

	Matches offerings that has any start time assigned.

	Parameters:	match (boolean) – true to match offerings with any start time, false to match offerings with no start time

	
start_time_terms

	

	
match_deadline(start, end, match)

	Matches assessments whose end time falls between the specified range inclusive.

	Parameters:	
	start (osid.calendaring.DateTime) – start of range

	end (osid.calendaring.DateTime) – end of range

	match (boolean) – true for a positive match, false for a negative match

	Raise:	InvalidArgument – end is less than start

	Raise:	NullArgument – start or end is null

	
match_any_deadline(match)

	Matches offerings that have any deadline assigned.

	Parameters:	match (boolean) – true to match offerings with any deadline, false to match offerings with no deadline

	
deadline_terms

	

	
match_duration(low, high, match)

	Matches assessments whose duration falls between the specified range inclusive.

	Parameters:	
	low (osid.calendaring.Duration) – start range of duration

	high (osid.calendaring.Duration) – end range of duration

	match (boolean) – true for a positive match, false for a negative match

	Raise:	InvalidArgument – end is less than start

	Raise:	NullArgument – start or end is null

	
match_any_duration(match)

	Matches offerings that have any duration assigned.

	Parameters:	match (boolean) – true to match offerings with any duration, false to match offerings with no duration

	
duration_terms

	

	
match_score_system_id(grade_system_id, match)

	Sets the grade system Id for this query.

	Parameters:	
	grade_system_id (osid.id.Id) – a grade system Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – grade_system_id is null

	
score_system_id_terms

	

	
supports_score_system_query()

	Tests if a GradeSystemQuery is available.

	Returns:	true if a grade system query is available, false otherwise

	Return type:	boolean

	
score_system_query

	Gets the query for a grade system.

Multiple retrievals produce a nested OR term.

	Returns:	the grade system query

	Return type:	osid.grading.GradeSystemQuery

	Raise:	Unimplemented – supports_score_system_query() is false

	
match_any_score_system(match)

	Matches taken assessments that have any grade system assigned.

	Parameters:	match (boolean) – true to match assessments with any grade system, false to match assessments with no grade system

	
score_system_terms

	

	
match_grade_system_id(grade_system_id, match)

	Sets the grade system Id for this query.

	Parameters:	
	grade_system_id (osid.id.Id) – a grade system Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – grade_system_id is null

	
grade_system_id_terms

	

	
supports_grade_system_query()

	Tests if a GradeSystemQuery is available.

	Returns:	true if a grade system query is available, false otherwise

	Return type:	boolean

	
grade_system_query

	Gets the query for a grade system.

Multiple retrievals produce a nested OR term.

	Returns:	the grade system query

	Return type:	osid.grading.GradeSystemQuery

	Raise:	Unimplemented – supports_score_system_query() is false

	
match_any_grade_system(match)

	Matches taken assessments that have any grade system assigned.

	Parameters:	match (boolean) – true to match assessments with any grade system, false to match assessments with no grade system

	
grade_system_terms

	

	
match_rubric_id(assessment_offered_id, match)

	Sets the rubric assessment offered Id for this query.

	Parameters:	
	assessment_offered_id (osid.id.Id) – an assessment offered Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – assessment_offered_id is null

	
rubric_id_terms

	

	
supports_rubric_query()

	Tests if an AssessmentOfferedQuery is available.

	Returns:	true if a rubric assessment offered query is available, false otherwise

	Return type:	boolean

	
rubric_query

	Gets the query for a rubric assessment.

Multiple retrievals produce a nested OR term.

	Returns:	the assessment offered query

	Return type:	osid.assessment.AssessmentOfferedQuery

	Raise:	Unimplemented – supports_rubric_query() is false

	
match_any_rubric(match)

	Matches an assessment offered that has any rubric assessment assigned.

	Parameters:	match (boolean) – true to match assessments offered with any rubric, false to match assessments offered with no rubric

	
rubric_terms

	

	
match_assessment_taken_id(assessment_taken_id, match)

	Sets the assessment taken Id for this query.

	Parameters:	
	assessment_taken_id (osid.id.Id) – an assessment taken Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – assessment_taken_id is null

	
assessment_taken_id_terms

	

	
supports_assessment_taken_query()

	Tests if an AssessmentTakenQuery is available.

	Returns:	true if an assessment taken query is available, false otherwise

	Return type:	boolean

	
assessment_taken_query

	Gets the query for an assessment taken.

Multiple retrievals produce a nested OR term.

	Returns:	the assessment taken query

	Return type:	osid.assessment.AssessmentTakenQuery

	Raise:	Unimplemented – supports_assessment_taken_query() is false

	
match_any_assessment_taken(match)

	Matches offerings that have any taken assessment version.

	Parameters:	match (boolean) – true to match offerings with any taken assessment, false to match offerings with no assessmen taken

	
assessment_taken_terms

	

	
match_bank_id(bank_id, match)

	Sets the bank Id for this query.

	Parameters:	
	bank_id (osid.id.Id) – a bank Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – bank_id is null

	
bank_id_terms

	

	
supports_bank_query()

	Tests if a BankQuery is available.

	Returns:	true if a bank query is available, false otherwise

	Return type:	boolean

	
bank_query

	Gets the query for a bank.

Multiple retrievals produce a nested OR term.

	Returns:	the bank query

	Return type:	osid.assessment.BankQuery

	Raise:	Unimplemented – supports_bank_query() is false

	
bank_terms

	

	
get_assessment_offered_query_record(assessment_offered_record_type)

	Gets the assessment offered query record corresponding to the given AssessmentOffered record Type.

Multiple retrievals produce a nested OR term.

	Parameters:	assessment_offered_record_type (osid.type.Type) – an assessment offered record type

	Returns:	the assessment offered query record

	Return type:	osid.assessment.records.AssessmentOfferedQueryRecord

	Raise:	NullArgument – assessment_offered_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(assessment_offered_record_type) is false

Assessment Taken Query

	
class dlkit.assessment.queries.AssessmentTakenQuery

	Bases: dlkit.osid.queries.OsidObjectQuery

This is the query for searching assessments.

Each method match request produces an AND term while multiple
invocations of a method produces a nested OR.

	
match_assessment_offered_id(assessment_offered_id, match)

	Sets the assessment offered Id for this query.

	Parameters:	
	assessment_offered_id (osid.id.Id) – an assessment Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – assessment_offered_id is null

	
assessment_offered_id_terms

	

	
supports_assessment_offered_query()

	Tests if an AssessmentOfferedQuery is available.

	Returns:	true if an assessment offered query is available, false otherwise

	Return type:	boolean

	
assessment_offered_query

	Gets the query for an assessment.

Multiple retrievals produce a nested OR term.

	Returns:	the assessment offered query

	Return type:	osid.assessment.AssessmentOfferedQuery

	Raise:	Unimplemented – supports_assessment_offered_query() is false

	
assessment_offered_terms

	

	
match_taker_id(resource_id, match)

	Sets the resource Id for this query.

	Parameters:	
	resource_id (osid.id.Id) – a resource Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – resource_id is null

	
taker_id_terms

	

	
supports_taker_query()

	Tests if a ResourceQuery is available.

	Returns:	true if a resource query is available, false otherwise

	Return type:	boolean

	
taker_query

	Gets the query for a resource.

Multiple retrievals produce a nested OR term.

	Returns:	the resource query

	Return type:	osid.resource.ResourceQuery

	Raise:	Unimplemented – supports_taker_query() is false

	
taker_terms

	

	
match_taking_agent_id(agent_id, match)

	Sets the agent Id for this query.

	Parameters:	
	agent_id (osid.id.Id) – an agent Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – agent_id is null

	
taking_agent_id_terms

	

	
supports_taking_agent_query()

	Tests if an AgentQuery is available.

	Returns:	true if an agent query is available, false otherwise

	Return type:	boolean

	
taking_agent_query

	Gets the query for an agent.

Multiple retrievals produce a nested OR term.

	Returns:	the agent query

	Return type:	osid.authentication.AgentQuery

	Raise:	Unimplemented – supports_taking_agent_query() is false

	
taking_agent_terms

	

	
match_actual_start_time(start, end, match)

	Matches assessments whose start time falls between the specified range inclusive.

	Parameters:	
	start (osid.calendaring.DateTime) – start of range

	end (osid.calendaring.DateTime) – end of range

	match (boolean) – true for a positive match, false for a negative match

	Raise:	InvalidArgument – end is less than start

	Raise:	NullArgument – start or end is null

	
match_any_actual_start_time(match)

	Matches taken assessments taken that have begun.

	Parameters:	match (boolean) – true to match assessments taken started, false to match assessments taken that have not begun

	
actual_start_time_terms

	

	
match_completion_time(start, end, match)

	Matches assessments whose completion time falls between the specified range inclusive.

	Parameters:	
	start (osid.calendaring.DateTime) – start of range

	end (osid.calendaring.DateTime) – end of range

	match (boolean) – true for a positive match, false for a negative match

	Raise:	InvalidArgument – end is less than start

	Raise:	NullArgument – start or end is null

	
match_any_completion_time(match)

	Matches taken assessments taken that have completed.

	Parameters:	match (boolean) – true to match assessments taken completed, false to match assessments taken that are incomplete

	
completion_time_terms

	

	
match_time_spent(low, high, match)

	Matches assessments where the time spent falls between the specified range inclusive.

	Parameters:	
	low (osid.calendaring.Duration) – start of duration range

	high (osid.calendaring.Duration) – end of duration range

	match (boolean) – true for a positive match, false for a negative match

	Raise:	InvalidArgument – high is less than low

	Raise:	NullArgument – low or high is null

	
time_spent_terms

	

	
match_score_system_id(grade_system_id, match)

	Sets the grade system Id for this query.

	Parameters:	
	grade_system_id (osid.id.Id) – a grade system Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – grade_system_id is null

	
score_system_id_terms

	

	
supports_score_system_query()

	Tests if a GradeSystemQuery is available.

	Returns:	true if a grade system query is available, false otherwise

	Return type:	boolean

	
score_system_query

	Gets the query for a grade system.

Multiple retrievals produce a nested OR term.

	Returns:	the grade system query

	Return type:	osid.grading.GradeSystemQuery

	Raise:	Unimplemented – supports_score_system_query() is false

	
match_any_score_system(match)

	Matches taken assessments that have any grade system assigned.

	Parameters:	match (boolean) – true to match assessments with any grade system, false to match assessments with no grade system

	
score_system_terms

	

	
match_score(low, high, match)

	Matches assessments whose score falls between the specified range inclusive.

	Parameters:	
	low (decimal) – start of range

	high (decimal) – end of range

	match (boolean) – true for a positive match, false for negative match

	Raise:	InvalidArgument – high is less than low

	
match_any_score(match)

	Matches taken assessments that have any score assigned.

	Parameters:	match (boolean) – true to match assessments with any score, false to match assessments with no score

	
score_terms

	

	
match_grade_id(grade_id, match)

	Sets the grade Id for this query.

	Parameters:	
	grade_id (osid.id.Id) – a grade Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – grade_id is null

	
grade_id_terms

	

	
supports_grade_query()

	Tests if a GradeQuery is available.

	Returns:	true if a grade query is available, false otherwise

	Return type:	boolean

	
grade_query

	Gets the query for a grade.

Multiple retrievals produce a nested OR term.

	Returns:	the grade query

	Return type:	osid.grading.GradeQuery

	Raise:	Unimplemented – supports_grade_query() is false

	
match_any_grade(match)

	Matches taken assessments that have any grade assigned.

	Parameters:	match (boolean) – true to match assessments with any grade, false to match assessments with no grade

	
grade_terms

	

	
match_feedback(comments, string_match_type, match)

	Sets the comment string for this query.

	Parameters:	
	comments (string) – comment string

	string_match_type (osid.type.Type) – the string match type

	match (boolean) – true for a positive match, false for negative match

	Raise:	InvalidArgument – comments is not of string_match_type

	Raise:	NullArgument – comments or string_match_type is null

	Raise:	Unsupported – supports_string_match_type(string_match_type) is false

	
match_any_feedback(match)

	Matches taken assessments that have any comments.

	Parameters:	match (boolean) – true to match assessments with any comments, false to match assessments with no comments

	
feedback_terms

	

	
match_rubric_id(assessment_taken_id, match)

	Sets the rubric assessment taken Id for this query.

	Parameters:	
	assessment_taken_id (osid.id.Id) – an assessment taken Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – assessment_taken_id is null

	
rubric_id_terms

	

	
supports_rubric_query()

	Tests if an AssessmentTakenQuery is available.

	Returns:	true if a rubric assessment taken query is available, false otherwise

	Return type:	boolean

	
rubric_query

	Gets the query for a rubric assessment.

Multiple retrievals produce a nested OR term.

	Returns:	the assessment taken query

	Return type:	osid.assessment.AssessmentTakenQuery

	Raise:	Unimplemented – supports_rubric_query() is false

	
match_any_rubric(match)

	Matches an assessment taken that has any rubric assessment assigned.

	Parameters:	match (boolean) – true to match assessments taken with any rubric, false to match assessments taken with no rubric

	
rubric_terms

	

	
match_bank_id(bank_id, match)

	Sets the bank Id for this query.

	Parameters:	
	bank_id (osid.id.Id) – a bank Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – bank_id is null

	
bank_id_terms

	

	
supports_bank_query()

	Tests if a BankQuery is available.

	Returns:	true if a bank query is available, false otherwise

	Return type:	boolean

	
bank_query

	Gets the query for a bank.

Multiple retrievals produce a nested OR term.

	Returns:	the bank query

	Return type:	osid.assessment.BankQuery

	Raise:	Unimplemented – supports_bank_query() is false

	
bank_terms

	

	
get_assessment_taken_query_record(assessment_taken_record_type)

	Gets the assessment taken query record corresponding to the given AssessmentTaken record Type.

Multiple retrievals produce a nested OR term.

	Parameters:	assessment_taken_record_type (osid.type.Type) – an assessment taken record type

	Returns:	the assessment taken query record

	Return type:	osid.assessment.records.AssessmentTakenQueryRecord

	Raise:	NullArgument – assessment_taken_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(assessment_taken_record_type) is false

Bank Query

	
class dlkit.assessment.queries.BankQuery

	Bases: dlkit.osid.queries.OsidCatalogQuery

This is the query for searching banks Each method specifies an AND term while multiple invocations of the same method produce a nested OR.

	
match_item_id(item_id, match)

	Sets the item Id for this query.

	Parameters:	
	item_id (osid.id.Id) – an item Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – item_id is null

	
item_id_terms

	

	
supports_item_query()

	Tests if a ItemQuery is available.

	Returns:	true if an item query is available, false otherwise

	Return type:	boolean

	
item_query

	Gets the query for an item.

Multiple retrievals produce a nested OR term.

	Returns:	the item query

	Return type:	osid.assessment.ItemQuery

	Raise:	Unimplemented – supports_item_query() is false

	
match_any_item(match)

	Matches assessment banks that have any item assigned.

	Parameters:	match (boolean) – true to match banks with any item, false to match assessments with no item

	
item_terms

	

	
match_assessment_id(assessment_id, match)

	Sets the assessment Id for this query.

	Parameters:	
	assessment_id (osid.id.Id) – an assessment Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – assessment_id is null

	
assessment_id_terms

	

	
supports_assessment_query()

	Tests if an AssessmentQuery is available.

	Returns:	true if an assessment query is available, false otherwise

	Return type:	boolean

	
assessment_query

	Gets the query for an assessment.

Multiple retrievals produce a nested OR term.

	Returns:	the assessment query

	Return type:	osid.assessment.AssessmentQuery

	Raise:	Unimplemented – supports_assessment_query() is false

	
match_any_assessment(match)

	Matches assessment banks that have any assessment assigned.

	Parameters:	match (boolean) – true to match banks with any assessment, false to match banks with no assessment

	
assessment_terms

	

	
match_assessment_offered_id(assessment_offered_id, match)

	Sets the assessment offered Id for this query.

	Parameters:	
	assessment_offered_id (osid.id.Id) – an assessment Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – assessment_offered_id is null

	
assessment_offered_id_terms

	

	
supports_assessment_offered_query()

	Tests if an AssessmentOfferedQuery is available.

	Returns:	true if an assessment offered query is available, false otherwise

	Return type:	boolean

	
assessment_offered_query

	Gets the query for an assessment offered.

Multiple retrievals produce a nested OR term.

	Returns:	the assessment offered query

	Return type:	osid.assessment.AssessmentOfferedQuery

	Raise:	Unimplemented – supports_assessment_offered_query() is false

	
match_any_assessment_offered(match)

	Matches assessment banks that have any assessment offering assigned.

	Parameters:	match (boolean) – true to match banks with any assessment offering, false to match banks with no offering

	
assessment_offered_terms

	

	
match_ancestor_bank_id(bank_id, match)

	Sets the bank Id for to match banks in which the specified bank is an acestor.

	Parameters:	
	bank_id (osid.id.Id) – a bank Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – bank_id is null

	
ancestor_bank_id_terms

	

	
supports_ancestor_bank_query()

	Tests if a BankQuery is available.

	Returns:	true if a bank query is available, false otherwise

	Return type:	boolean

	
ancestor_bank_query

	Gets the query for an ancestor bank.

Multiple retrievals produce a nested OR term.

	Returns:	the bank query

	Return type:	osid.assessment.BankQuery

	Raise:	Unimplemented – supports_ancestor_bank_query() is false

	
match_any_ancestor_bank(match)

	Matches a bank that has any ancestor.

	Parameters:	match (boolean) – true to match banks with any ancestor banks, false to match root banks

	
ancestor_bank_terms

	

	
match_descendant_bank_id(bank_id, match)

	Sets the bank Id for to match banks in which the specified bank is a descendant.

	Parameters:	
	bank_id (osid.id.Id) – a bank Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – bank_id is null

	
descendant_bank_id_terms

	

	
supports_descendant_bank_query()

	Tests if a BankQuery is available.

	Returns:	true if a bank query is available, false otherwise

	Return type:	boolean

	
descendant_bank_query

	Gets the query for a descendant bank.

Multiple retrievals produce a nested OR term.

	Returns:	the bank query

	Return type:	osid.assessment.BankQuery

	Raise:	Unimplemented – supports_descendant_bank_query() is false

	
match_any_descendant_bank(match)

	Matches a bank that has any descendant.

	Parameters:	match (boolean) – true to match banks with any descendant banks, false to match leaf banks

	
descendant_bank_terms

	

	
get_bank_query_record(bank_record_type)

	Gets the bank query record corresponding to the given Bank record Type.

Multiple record retrievals produce a nested OR term.

	Parameters:	bank_record_type (osid.type.Type) – a bank record type

	Returns:	the bank query record

	Return type:	osid.assessment.records.BankQueryRecord

	Raise:	NullArgument – bank_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(bank_record_type) is false

Records

Question Record

	
class dlkit.assessment.records.QuestionRecord

	Bases: dlkit.osid.records.OsidRecord

A record for a Question.

The methods specified by the record type are available through the
underlying object.

Question Query Record

	
class dlkit.assessment.records.QuestionQueryRecord

	Bases: dlkit.osid.records.OsidRecord

A record for a QuestionQuery.

The methods specified by the record type are available through the
underlying object.

Question Form Record

	
class dlkit.assessment.records.QuestionFormRecord

	Bases: dlkit.osid.records.OsidRecord

A record for a QuestionForm.

The methods specified by the record type are available through the
underlying object.

Answer Record

	
class dlkit.assessment.records.AnswerRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an Answer.

The methods specified by the record type are available through the
underlying object.

Answer Query Record

	
class dlkit.assessment.records.AnswerQueryRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an AnswerQuery.

The methods specified by the record type are available through the
underlying object.

Answer Form Record

	
class dlkit.assessment.records.AnswerFormRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an AnswerForm.

The methods specified by the record type are available through the
underlying object.

Item Record

	
class dlkit.assessment.records.ItemRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an Item.

The methods specified by the record type are available through the
underlying object.

Item Query Record

	
class dlkit.assessment.records.ItemQueryRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an ItemQuery.

The methods specified by the record type are available through the
underlying object.

Item Form Record

	
class dlkit.assessment.records.ItemFormRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an ItemForm.

The methods specified by the record type are available through the
underlying object.

Assessment Record

	
class dlkit.assessment.records.AssessmentRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an Assessment.

The methods specified by the record type are available through the
underlying object.

Assessment Query Record

	
class dlkit.assessment.records.AssessmentQueryRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an AssessmentQuery.

The methods specified by the record type are available through the
underlying object.

Assessment Form Record

	
class dlkit.assessment.records.AssessmentFormRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an AssessmentForm.

The methods specified by the record type are available through the
underlying object.

Assessment Offered Record

	
class dlkit.assessment.records.AssessmentOfferedRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an AssessmentOffered.

The methods specified by the record type are available through the
underlying object.

Assessment Offered Query Record

	
class dlkit.assessment.records.AssessmentOfferedQueryRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an AssessmentOfferedQuery.

The methods specified by the record type are available through the
underlying object.

Assessment Offered Form Record

	
class dlkit.assessment.records.AssessmentOfferedFormRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an AssessmentOfferedForm.

The methods specified by the record type are available through the
underlying object.

Assessment Taken Record

	
class dlkit.assessment.records.AssessmentTakenRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an AssessmentTaken.

The methods specified by the record type are available through the
underlying object.

Assessment Taken Query Record

	
class dlkit.assessment.records.AssessmentTakenQueryRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an AssessmentTakenQuery.

The methods specified by the record type are available through the
underlying object.

Assessment Taken Form Record

	
class dlkit.assessment.records.AssessmentTakenFormRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an AssessmentTakenForm.

The methods specified by the record type are available through the
underlying object.

Assessment Section Record

	
class dlkit.assessment.records.AssessmentSectionRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an AssessmentSection.

The methods specified by the record type are available through the
underlying object.

Bank Record

	
class dlkit.assessment.records.BankRecord

	Bases: dlkit.osid.records.OsidRecord

A record for a Bank.

The methods specified by the record type are available through the
underlying object.

Bank Query Record

	
class dlkit.assessment.records.BankQueryRecord

	Bases: dlkit.osid.records.OsidRecord

A record for a BankQuery.

The methods specified by the record type are available through the
underlying object.

Bank Form Record

	
class dlkit.assessment.records.BankFormRecord

	Bases: dlkit.osid.records.OsidRecord

A record for a BankForm.

The methods specified by the record type are available through the
underlying object.

Response Record

	
class dlkit.assessment.records.ResponseRecord

	Bases: dlkit.osid.records.OsidRecord

A record for a Response.

The methods specified by the record type are available through the
underlying object.

Rules

Response

	
class dlkit.assessment.rules.Response

	Bases: dlkit.osid.rules.OsidCondition

A response to an assessment item.

This interface contains methods to set values in response to an
assessmet item and mirrors the item record structure with the
corresponding setters.

	
item_id

	Gets the Id of the Item.

	Returns:	the assessment item Id

	Return type:	osid.id.Id

	
item

	Gets the Item.

	Returns:	the assessment item

	Return type:	osid.assessment.Item

	
get_response_record(item_record_type)

	Gets the response record corresponding to the given Item record Type.

This method is used to retrieve an object implementing the
requested record. The item_record_type may be the Type
returned in get_record_types() or any of its parents in a
Type hierarchy where has_record_type(item_record_type)
is true .

	Parameters:	item_record_type (osid.type.Type) – an item record type

	Returns:	the response record

	Return type:	osid.assessment.records.ResponseRecord

	Raise:	NullArgument – item_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(item_record_type) is false

Commenting

	Summary

	Service Managers
	Commenting Manager

	Commenting Profile Methods

	Book Lookup Methods

	Book Admin Methods

	Book Hierarchy Methods

	Book Hierarchy Design Methods

	Book
	Book

	Comment Lookup Methods

	Comment Query Methods

	Comment Admin Methods

	Objects
	Comment

	Comment Form

	Comment List

	Book Form

	Book List

	Queries
	Comment Query

	Book Query

	Records
	Comment Record

	Comment Query Record

	Comment Form Record

	Book Record

	Book Query Record

	Book Form Record

Summary

Commenting Open Service Interface Definitions
commenting version 3.0.0

The Commenting OSID provides a means of relating user comments and
ratings to OSID Objects.

The Commenting OSID may be used as an auxiliary service orchestrated
with other OSIDs to either provide administrative comments as well as
create a social network-esque comment and rating service to various
OsidObjects.

Comments

Comments contain text entries logged by date and Agent. A
Comment may also include a rating represented by a Grade defined
in a GradeSystem. The RatingLookupSession may be used to query
cumulative scores across an object reference or the entire Book.

Comments are OsidRelationships between a commentor and a
reference Id. The relationship defines dates for which the comment
and/or rating is effective.

Commentors

An Agent comments on something. As a person is represented by a
Resource in the Resource OSID, the Comments provide access to both
the commenting Agent and the related Resource to avoid the need
of an additional service orchestration for resolving the Agent.

Cataloging

Comments are cataloged in Books which may also be grouped
hierarchically to federate multiple collections of comments.

Sub Packages

The Commenting OSID includes a Commenting Batch OSID for managing
Comments and Books in bulk.

 Commenting Open Service Interface Definitions
commenting version 3.0.0

The Commenting OSID provides a means of relating user comments and
ratings to OSID Objects.

The Commenting OSID may be used as an auxiliary service orchestrated
with other OSIDs to either provide administrative comments as well as
create a social network-esque comment and rating service to various
OsidObjects.

Comments

Comments contain text entries logged by date and Agent. A
Comment may also include a rating represented by a Grade defined
in a GradeSystem. The RatingLookupSession may be used to query
cumulative scores across an object reference or the entire Book.

Comments are OsidRelationships between a commentor and a
reference Id. The relationship defines dates for which the comment
and/or rating is effective.

Commentors

An Agent comments on something. As a person is represented by a
Resource in the Resource OSID, the Comments provide access to both
the commenting Agent and the related Resource to avoid the need
of an additional service orchestration for resolving the Agent.

Cataloging

Comments are cataloged in Books which may also be grouped
hierarchically to federate multiple collections of comments.

Sub Packages

The Commenting OSID includes a Commenting Batch OSID for managing
Comments and Books in bulk.

Service Managers

Commenting Manager

	
class dlkit.services.commenting.CommentingManager

	Bases: dlkit.osid.managers.OsidManager, dlkit.osid.sessions.OsidSession, dlkit.services.commenting.CommentingProfile

	
commenting_batch_manager

	Gets a CommentingBatchManager.

	Returns:	a CommentingBatchManager

	Return type:	osid.commenting.batch.CommentingBatchManager

	Raise:	OperationFailed – unable to complete request

	Raise:	Unimplemented – supports_commenting_batch() is false

Commenting Profile Methods

	
CommentingManager.supports_comment_lookup()

	Tests for the availability of a comment lookup service.

	Returns:	true if comment lookup is available, false otherwise

	Return type:	boolean

	
CommentingManager.supports_comment_query()

	Tests if querying comments is available.

	Returns:	true if comment query is available, false otherwise

	Return type:	boolean

	
CommentingManager.supports_comment_admin()

	Tests if managing comments is available.

	Returns:	true if comment admin is available, false otherwise

	Return type:	boolean

	
CommentingManager.supports_book_lookup()

	Tests for the availability of an book lookup service.

	Returns:	true if book lookup is available, false otherwise

	Return type:	boolean

	
CommentingManager.supports_book_admin()

	Tests for the availability of a book administrative service for creating and deleting books.

	Returns:	true if book administration is available, false otherwise

	Return type:	boolean

	
CommentingManager.supports_book_hierarchy()

	Tests for the availability of a book hierarchy traversal service.

	Returns:	true if book hierarchy traversal is available, false otherwise

	Return type:	boolean

	
CommentingManager.supports_book_hierarchy_design()

	Tests for the availability of a book hierarchy design service.

	Returns:	true if book hierarchy design is available, false otherwise

	Return type:	boolean

	
CommentingManager.comment_record_types

	Gets the supported Comment record types.

	Returns:	a list containing the supported comment record types

	Return type:	osid.type.TypeList

	
CommentingManager.comment_search_record_types

	Gets the supported comment search record types.

	Returns:	a list containing the supported comment search record types

	Return type:	osid.type.TypeList

	
CommentingManager.book_record_types

	Gets the supported Book record types.

	Returns:	a list containing the supported book record types

	Return type:	osid.type.TypeList

	
CommentingManager.book_search_record_types

	Gets the supported book search record types.

	Returns:	a list containing the supported book search record types

	Return type:	osid.type.TypeList

Book Lookup Methods

	
CommentingManager.can_lookup_books()

	Tests if this user can perform Book lookups.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an application that may not offer lookup operations
to unauthorized users.

	Returns:	false if lookup methods are not authorized, true otherwise

	Return type:	boolean

	
CommentingManager.use_comparative_book_view()

	The returns from the lookup methods may omit or translate elements based on this session, such as authorization, and not result in an error.
This view is used when greater interoperability is desired at
the expense of precision.

	
CommentingManager.use_plenary_book_view()

	A complete view of the Book returns is desired.
Methods will return what is requested or result in an error.
This view is used when greater precision is desired at the
expense of interoperability.

	
CommentingManager.get_books_by_ids(book_ids)

	Gets a BookList corresponding to the given IdList.
In plenary mode, the returned list contains all of the books
specified in the Id list, in the order of the list,
including duplicates, or an error results if an Id in the
supplied list is not found or inaccessible. Otherwise,
inaccessible Books may be omitted from the list and may
present the elements in any order including returning a unique
set.

	Parameters:	book_ids (osid.id.IdList) – the list of Ids to retrieve

	Returns:	the returned Book list

	Return type:	osid.commenting.BookList

	Raise:	NotFound – an Id was not found

	Raise:	NullArgument – book_ids is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.get_books_by_genus_type(book_genus_type)

	Gets a BookList corresponding to the given book genus Type which does not include books of genus types derived from the specified Type.
In plenary mode, the returned list contains all known books or
an error results. Otherwise, the returned list may contain only
those books that are accessible through this session.

	Parameters:	book_genus_type (osid.type.Type) – a book genus type

	Returns:	the returned Book list

	Return type:	osid.commenting.BookList

	Raise:	NullArgument – book_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.get_books_by_parent_genus_type(book_genus_type)

	Gets a BookList corresponding to the given book genus Type and include any additional books with genus types derived from the specified Type.
In plenary mode, the returned list contains all known books or
an error results. Otherwise, the returned list may contain only
those books that are accessible through this session.

	Parameters:	book_genus_type (osid.type.Type) – a book genus type

	Returns:	the returned Book list

	Return type:	osid.commenting.BookList

	Raise:	NullArgument – book_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.get_books_by_record_type(book_record_type)

	Gets a BookList containing the given book record Type.
In plenary mode, the returned list contains all known books or
an error results. Otherwise, the returned list may contain only
those books that are accessible through this session.

	Parameters:	book_record_type (osid.type.Type) – a book record type

	Returns:	the returned Book list

	Return type:	osid.commenting.BookList

	Raise:	NullArgument – book_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.get_books_by_provider(resource_id)

	Gets a BookList from the given provider ````.
In plenary mode, the returned list contains all known books or
an error results. Otherwise, the returned list may contain only
those books that are accessible through this session.

	Parameters:	resource_id (osid.id.Id) – a resource Id

	Returns:	the returned Book list

	Return type:	osid.commenting.BookList

	Raise:	NullArgument – resource_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.books

	Gets all Books.
In plenary mode, the returned list contains all known books or
an error results. Otherwise, the returned list may contain only
those books that are accessible through this session.

	Returns:	a list of Books

	Return type:	osid.commenting.BookList

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Book Admin Methods

	
CommentingManager.can_create_books()

	Tests if this user can create Books.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known creating a Book
will result in a PermissionDenied. This is intended as a
hint to an application that may not wish to offer create
operations to unauthorized users.

	Returns:	false if Book creation is not authorized, true otherwise

	Return type:	boolean

	
CommentingManager.can_create_book_with_record_types(book_record_types)

	Tests if this user can create a single Book using the desired record types.
While CommentingManager.getBookRecordTypes() can be used to
examine which records are supported, this method tests which
record(s) are required for creating a specific Book.
Providing an empty array tests if a Book can be created with
no records.

	Parameters:	book_record_types (osid.type.Type[]) – array of book record types

	Returns:	true if Book creation using the specified record Types is supported, false otherwise

	Return type:	boolean

	Raise:	NullArgument – book_record_types is null

	
CommentingManager.get_book_form_for_create(book_record_types)

	Gets the book form for creating new books.
A new form should be requested for each create transaction.

	Parameters:	book_record_types (osid.type.Type[]) – array of book record types

	Returns:	the book form

	Return type:	osid.commenting.BookForm

	Raise:	NullArgument – book_record_types is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – unable to get form for requested record types

	
CommentingManager.create_book(book_form)

	Creates a new Book.

	Parameters:	book_form (osid.commenting.BookForm) – the form for this Book

	Returns:	the new Book

	Return type:	osid.commenting.Book

	Raise:	IllegalState – book_form already used in a create transaction

	Raise:	InvalidArgument – one or more of the form elements is invalid

	Raise:	NullArgument – book_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – book_form did not originte from get_book_form_for_create()

	
CommentingManager.can_update_books()

	Tests if this user can update Books.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known updating a Book
will result in a PermissionDenied. This is intended as a
hint to an application that may not wish to offer update
operations to unauthorized users.

	Returns:	false if Book modification is not authorized, true otherwise

	Return type:	boolean

	
CommentingManager.get_book_form_for_update(book_id)

	Gets the book form for updating an existing book.
A new book form should be requested for each update transaction.

	Parameters:	book_id (osid.id.Id) – the Id of the Book

	Returns:	the book form

	Return type:	osid.commenting.BookForm

	Raise:	NotFound – book_id is not found

	Raise:	NullArgument – book_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.update_book(book_form)

	Updates an existing book.

	Parameters:	book_form (osid.commenting.BookForm) – the form containing the elements to be updated

	Raise:	IllegalState – book_form already used in an update transaction

	Raise:	InvalidArgument – the form contains an invalid value

	Raise:	NullArgument – book_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – book_form did not originte from get_book_form_for_update()

	
CommentingManager.can_delete_books()

	Tests if this user can delete Books A return of true does not guarantee successful authorization.
A return of false indicates that it is known deleting a Book
will result in a PermissionDenied. This is intended as a
hint to an application that may not wish to offer delete
operations to unauthorized users.

	Returns:	false if Book deletion is not authorized, true otherwise

	Return type:	boolean

	
CommentingManager.delete_book(book_id)

	Deletes a Book.

	Parameters:	book_id (osid.id.Id) – the Id of the Book to remove

	Raise:	NotFound – book_id not found

	Raise:	NullArgument – book_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.can_manage_book_aliases()

	Tests if this user can manage Id aliases for Books.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known changing an alias
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer alias
operations to an unauthorized user.

	Returns:	false if Book aliasing is not authorized, true otherwise

	Return type:	boolean

	
CommentingManager.alias_book(book_id, alias_id)

	Adds an Id to a Book for the purpose of creating compatibility.
The primary Id of the Book is determined by the
provider. The new Id performs as an alias to the primary
Id. If the alias is a pointer to another book, it is
reassigned to the given book Id.

	Parameters:	
	book_id (osid.id.Id) – the Id of a Book

	alias_id (osid.id.Id) – the alias Id

	Raise:	AlreadyExists – alias_id is already assigned

	Raise:	NotFound – book_id not found

	Raise:	NullArgument – book_id or alias_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Book Hierarchy Methods

	
CommentingManager.book_hierarchy_id

	Gets the hierarchy Id associated with this session.

	Returns:	the hierarchy Id associated with this session

	Return type:	osid.id.Id

	
CommentingManager.book_hierarchy

	Gets the hierarchy associated with this session.

	Returns:	the hierarchy associated with this session

	Return type:	osid.hierarchy.Hierarchy

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.can_access_book_hierarchy()

	Tests if this user can perform hierarchy queries.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an application that may opt not to offer lookup
operations.

	Returns:	false if hierarchy traversal methods are not authorized, true otherwise

	Return type:	boolean

	
CommentingManager.use_comparative_book_view()

	The returns from the lookup methods may omit or translate elements based on this session, such as authorization, and not result in an error.
This view is used when greater interoperability is desired at
the expense of precision.

	
CommentingManager.use_plenary_book_view()

	A complete view of the Book returns is desired.
Methods will return what is requested or result in an error.
This view is used when greater precision is desired at the
expense of interoperability.

	
CommentingManager.root_book_ids

	Gets the root book Ids in this hierarchy.

	Returns:	the root book Ids

	Return type:	osid.id.IdList

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.root_books

	Gets the root books in the book hierarchy.
A node with no parents is an orphan. While all book Ids are
known to the hierarchy, an orphan does not appear in the
hierarchy unless explicitly added as a root node or child of
another node.

	Returns:	the root books

	Return type:	osid.commenting.BookList

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.has_parent_books(book_id)

	Tests if the Book has any parents.

	Parameters:	book_id (osid.id.Id) – a book Id

	Returns:	true if the book has parents, f alse otherwise

	Return type:	boolean

	Raise:	NotFound – book_id is not found

	Raise:	NullArgument – book_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.is_parent_of_book(id_, book_id)

	Tests if an Id is a direct parent of book.

	Parameters:	
	id (osid.id.Id) – an Id

	book_id (osid.id.Id) – the Id of a book

	Returns:	true if this id is a parent of book_id, f alse otherwise

	Return type:	boolean

	Raise:	NotFound – book_id is not found

	Raise:	NullArgument – id or book_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.get_parent_book_ids(book_id)

	Gets the parent Ids of the given book.

	Parameters:	book_id (osid.id.Id) – a book Id

	Returns:	the parent Ids of the book

	Return type:	osid.id.IdList

	Raise:	NotFound – book_id is not found

	Raise:	NullArgument – book_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.get_parent_books(book_id)

	Gets the parent books of the given id.

	Parameters:	book_id (osid.id.Id) – the Id of the Book to query

	Returns:	the parent books of the id

	Return type:	osid.commenting.BookList

	Raise:	NotFound – a Book identified by Id is not found

	Raise:	NullArgument – book_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.is_ancestor_of_book(id_, book_id)

	Tests if an Id is an ancestor of a book.

	Parameters:	
	id (osid.id.Id) – an Id

	book_id (osid.id.Id) – the Id of a book

	Returns:	tru e if this id is an ancestor of book_id, false otherwise

	Return type:	boolean

	Raise:	NotFound – book_id is not found

	Raise:	NullArgument – id or book_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.has_child_books(book_id)

	Tests if a book has any children.

	Parameters:	book_id (osid.id.Id) – a book Id

	Returns:	true if the book_id has children, false otherwise

	Return type:	boolean

	Raise:	NotFound – book_id is not found

	Raise:	NullArgument – book_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.is_child_of_book(id_, book_id)

	Tests if a book is a direct child of another.

	Parameters:	
	id (osid.id.Id) – an Id

	book_id (osid.id.Id) – the Id of a book

	Returns:	true if the id is a child of book_id, false otherwise

	Return type:	boolean

	Raise:	NotFound – book_id is not found

	Raise:	NullArgument – id or book_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.get_child_book_ids(book_id)

	Gets the child Ids of the given book.

	Parameters:	book_id (osid.id.Id) – the Id to query

	Returns:	the children of the book

	Return type:	osid.id.IdList

	Raise:	NotFound – book_id is not found

	Raise:	NullArgument – book_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.get_child_books(book_id)

	Gets the child books of the given id.

	Parameters:	book_id (osid.id.Id) – the Id of the Book to query

	Returns:	the child books of the id

	Return type:	osid.commenting.BookList

	Raise:	NotFound – a Book identified by Id is not found

	Raise:	NullArgument – book_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.is_descendant_of_book(id_, book_id)

	Tests if an Id is a descendant of a book.

	Parameters:	
	id (osid.id.Id) – an Id

	book_id (osid.id.Id) – the Id of a book

	Returns:	true if the id is a descendant of the book_id, false otherwise

	Return type:	boolean

	Raise:	NotFound – book_id is not found

	Raise:	NullArgument – id or book_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.get_book_node_ids(book_id, ancestor_levels, descendant_levels, include_siblings)

	Gets a portion of the hierarchy for the given book.

	Parameters:	
	book_id (osid.id.Id) – the Id to query

	ancestor_levels (cardinal) – the maximum number of ancestor levels to include. A value of 0 returns no parents in the node.

	descendant_levels (cardinal) – the maximum number of descendant levels to include. A value of 0 returns no children in the node.

	include_siblings (boolean) – true to include the siblings of the given node, false to omit the siblings

	Returns:	a book node

	Return type:	osid.hierarchy.Node

	Raise:	NotFound – book_id is not found

	Raise:	NullArgument – book_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.get_book_nodes(book_id, ancestor_levels, descendant_levels, include_siblings)

	Gets a portion of the hierarchy for the given book.

	Parameters:	
	book_id (osid.id.Id) – the Id to query

	ancestor_levels (cardinal) – the maximum number of ancestor levels to include. A value of 0 returns no parents in the node.

	descendant_levels (cardinal) – the maximum number of descendant levels to include. A value of 0 returns no children in the node.

	include_siblings (boolean) – true to include the siblings of the given node, false to omit the siblings

	Returns:	a book node

	Return type:	osid.commenting.BookNode

	Raise:	NotFound – book_id is not found

	Raise:	NullArgument – book_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Book Hierarchy Design Methods

	
CommentingManager.book_hierarchy_id

	Gets the hierarchy Id associated with this session.

	Returns:	the hierarchy Id associated with this session

	Return type:	osid.id.Id

	
CommentingManager.book_hierarchy

	Gets the hierarchy associated with this session.

	Returns:	the hierarchy associated with this session

	Return type:	osid.hierarchy.Hierarchy

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.can_modify_book_hierarchy()

	Tests if this user can change the hierarchy.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known performing any update
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer these
operations to an unauthorized user.

	Returns:	false if changing this hierarchy is not authorized, true otherwise

	Return type:	boolean

	
CommentingManager.add_root_book(book_id)

	Adds a root book.

	Parameters:	book_id (osid.id.Id) – the Id of a book

	Raise:	AlreadyExists – book_id is already in hierarchy

	Raise:	NotFound – book_id is not found

	Raise:	NullArgument – book_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.remove_root_book(book_id)

	Removes a root book.

	Parameters:	book_id (osid.id.Id) – the Id of a book

	Raise:	NotFound – book_id is not a root

	Raise:	NullArgument – book_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.add_child_book(book_id, child_id)

	Adds a child to a book.

	Parameters:	
	book_id (osid.id.Id) – the Id of a book

	child_id (osid.id.Id) – the Id of the new child

	Raise:	AlreadyExists – book_id is already a parent of child_id

	Raise:	NotFound – book_id or child_id not found

	Raise:	NullArgument – book_id or child_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.remove_child_book(book_id, child_id)

	Removes a child from a book.

	Parameters:	
	book_id (osid.id.Id) – the Id of a book

	child_id (osid.id.Id) – the Id of the new child

	Raise:	NotFound – book_id not a parent of child_id

	Raise:	NullArgument – book_id or child_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
CommentingManager.remove_child_books(book_id)

	Removes all children from a book.

	Parameters:	book_id (osid.id.Id) – the Id of a book

	Raise:	NotFound – book_id not found

	Raise:	NullArgument – book_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Book

Book

	
class dlkit.services.commenting.Book

	Bases: dlkit.osid.objects.OsidCatalog, dlkit.osid.sessions.OsidSession

	
get_book_record(book_record_type)

	Gets the book record corresponding to the given Book record Type.
This method is used to retrieve an object implementing the
requested record. The book_record_type may be the Type
returned in get_record_types() or any of its parents in a
Type hierarchy where has_record_type(book_record_type)
is true .

	Parameters:	book_record_type (osid.type.Type) – the type of book record to retrieve

	Returns:	the book record

	Return type:	osid.commenting.records.BookRecord

	Raise:	NullArgument – book_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(book_record_type) is false

Comment Lookup Methods

	
Book.can_lookup_comments()

	Tests if this user can examine this book.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an application that may opt not to offer these
operations.

	Returns:	false if book reading methods are not authorized, true otherwise

	Return type:	boolean

	
Book.use_comparative_comment_view()

	The returns from the lookup methods may omit or translate elements based on this session, such as authorization, and not result in an error.
This view is used when greater interoperability is desired at
the expense of precision.

	
Book.use_plenary_comment_view()

	A complete view of the Comment returns is desired.
Methods will return what is requested or result in an error.
This view is used when greater precision is desired at the
expense of interoperability.

	
Book.use_federated_book_view()

	Federates the view for methods in this session.
A federated view will include comments in books which are
children of this book in the book hierarchy.

	
Book.use_isolated_book_view()

	Isolates the view for methods in this session.
An isolated view restricts retrievals to this book only.

	
Book.use_effective_comment_view()

	Only comments whose effective dates are current are returned by methods in this session.

	
Book.use_any_effective_comment_view()

	All comments of any effective dates are returned by all methods in this session.

	
Book.get_comment(comment_id)

	Gets the Comment specified by its Id.

	Parameters:	comment_id (osid.id.Id) – the Id of the Comment to retrieve

	Returns:	the returned Comment

	Return type:	osid.commenting.Comment

	Raise:	NotFound – no Comment found with the given Id

	Raise:	NullArgument – comment_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Book.get_comments_by_ids(comment_ids)

	Gets a CommentList corresponding to the given IdList.

	Parameters:	comment_ids (osid.id.IdList) – the list of Ids to retrieve

	Returns:	the returned Comment list

	Return type:	osid.commenting.CommentList

	Raise:	NotFound – an Id was not found

	Raise:	NullArgument – comment_ids is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Book.get_comments_by_genus_type(comment_genus_type)

	Gets a CommentList corresponding to the given comment genus Type which does not include comments of genus types derived from the specified Type.

	Parameters:	comment_genus_type (osid.type.Type) – a comment genus type

	Returns:	the returned Comment list

	Return type:	osid.commenting.CommentList

	Raise:	NullArgument – comment_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Book.get_comments_by_parent_genus_type(comment_genus_type)

	Gets a CommentList corresponding to the given comment genus Type and include any additional comments with genus types derived from the specified Type.

	Parameters:	comment_genus_type (osid.type.Type) – a comment genus type

	Returns:	the returned Comment list

	Return type:	osid.commenting.CommentList

	Raise:	NullArgument – comment_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Book.get_comments_by_record_type(comment_record_type)

	Gets a CommentList containing the given comment record Type.

	Parameters:	comment_record_type (osid.type.Type) – a comment record type

	Returns:	the returned Comment list

	Return type:	osid.commenting.CommentList

	Raise:	NullArgument – comment_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Book.get_comments_on_date(from_, to)

	Gets a CommentList effective during the entire given date range inclusive but not confined to the date range.

	Parameters:	
	from (osid.calendaring.DateTime) – starting date

	to (osid.calendaring.DateTime) – ending date

	Returns:	the returned Comment list

	Return type:	osid.commenting.CommentList

	Raise:	InvalidArgument – from is greater than to

	Raise:	NullArgument – from or to is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Book.get_comments_by_genus_type_on_date(comment_genus_type, from_, to)

	Gets a CommentList of a given genus type and effective during the entire given date range inclusive but not confined to the date range.

	Parameters:	
	comment_genus_type (osid.type.Type) – a comment genus type

	from (osid.calendaring.DateTime) – starting date

	to (osid.calendaring.DateTime) – ending date

	Returns:	the returned Comment list

	Return type:	osid.commenting.CommentList

	Raise:	InvalidArgument – from is greater than to

	Raise:	NullArgument – comment_genus_type, from, or to is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Book.get_comments_for_commentor(resource_id)

	Gets a list of comments corresponding to a resource Id.

	Parameters:	resource_id (osid.id.Id) – the Id of the resource

	Returns:	the returned CommentList

	Return type:	osid.commenting.CommentList

	Raise:	NullArgument – resource_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Book.get_comments_for_commentor_on_date(resource_id, from_, to)

	Gets a list of all comments corresponding to a resource Id and effective during the entire given date range inclusive but not confined to the date range.

	Parameters:	
	resource_id (osid.id.Id) – the Id of the resource

	from (osid.calendaring.DateTime) – from date

	to (osid.calendaring.DateTime) – to date

	Returns:	the returned CommentList

	Return type:	osid.commenting.CommentList

	Raise:	InvalidArgument – to is less than from

	Raise:	NullArgument – resource_id, from, or to is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Book.get_comments_by_genus_type_for_commentor(resource_id, comment_genus_type)

	Gets a list of comments of the given genus type corresponding to a resource Id.

	Parameters:	
	resource_id (osid.id.Id) – the Id of the resource

	comment_genus_type (osid.type.Type) – the comment genus type

	Returns:	the returned CommentList

	Return type:	osid.commenting.CommentList

	Raise:	NullArgument – resource_id or comment_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Book.get_comments_by_genus_type_for_commentor_on_date(resource_id, comment_genus_type, from_, to)

	Gets a list of all comments of the given genus type corresponding to a resource Id and effective during the entire given date range inclusive but not confined to the date range.

	Parameters:	
	resource_id (osid.id.Id) – the Id of the resource

	comment_genus_type (osid.type.Type) – the comment genus type

	from (osid.calendaring.DateTime) – from date

	to (osid.calendaring.DateTime) – to date

	Returns:	the returned CommentList

	Return type:	osid.commenting.CommentList

	Raise:	InvalidArgument – to is less than from

	Raise:	NullArgument – resource_id, comment_genus_type, from, or to is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Book.get_comments_for_reference(reference_id)

	Gets a list of comments corresponding to a reference Id.

	Parameters:	reference_id (osid.id.Id) – the Id of the reference

	Returns:	the returned CommentList

	Return type:	osid.commenting.CommentList

	Raise:	NullArgument – reference_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Book.get_comments_for_reference_on_date(reference_id, from_, to)

	Gets a list of all comments corresponding to a reference Id and effective during the entire given date range inclusive but not confined to the date range.

	Parameters:	
	reference_id (osid.id.Id) – a reference Id

	from (osid.calendaring.DateTime) – from date

	to (osid.calendaring.DateTime) – to date

	Returns:	the returned CommentList

	Return type:	osid.commenting.CommentList

	Raise:	InvalidArgument – to is less than from

	Raise:	NullArgument – reference_id, from, or to is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Book.get_comments_by_genus_type_for_reference(reference_id, comment_genus_type)

	Gets a list of comments of the given genus type corresponding to a reference Id.

	Parameters:	
	reference_id (osid.id.Id) – the Id of the reference

	comment_genus_type (osid.type.Type) – the comment genus type

	Returns:	the returned CommentList

	Return type:	osid.commenting.CommentList

	Raise:	NullArgument – reference_id or comment_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Book.get_comments_by_genus_type_for_reference_on_date(reference_id, comment_genus_type, from_, to)

	Gets a list of all comments of the given genus type corresponding to a reference Id and effective during the entire given date range inclusive but not confined to the date range.

	Parameters:	
	reference_id (osid.id.Id) – a reference Id

	comment_genus_type (osid.type.Type) – the comment genus type

	from (osid.calendaring.DateTime) – from date

	to (osid.calendaring.DateTime) – to date

	Returns:	the returned CommentList

	Return type:	osid.commenting.CommentList

	Raise:	InvalidArgument – to is less than from

	Raise:	NullArgument – reference_id, comment_genus_type, from, or to is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Book.get_comments_for_commentor_and_reference(resource_id, reference_id)

	Gets a list of comments corresponding to a resource and reference Id.

	Parameters:	
	resource_id (osid.id.Id) – the Id of the resource

	reference_id (osid.id.Id) – the Id of the reference

	Returns:	the returned CommentList

	Return type:	osid.commenting.CommentList

	Raise:	NullArgument – resource_id or reference_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Book.get_comments_for_commentor_and_reference_on_date(resource_id, reference_id, from_, to)

	Gets a list of all comments corresponding to a resource and reference Id and effective during the entire given date range inclusive but not confined to the date range.

	Parameters:	
	resource_id (osid.id.Id) – the Id of the resource

	reference_id (osid.id.Id) – a reference Id

	from (osid.calendaring.DateTime) – from date

	to (osid.calendaring.DateTime) – to date

	Returns:	the returned CommentList

	Return type:	osid.commenting.CommentList

	Raise:	InvalidArgument – to is less than from

	Raise:	NullArgument – resource_id, reference_id, from, or to is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Book.get_comments_by_genus_type_for_commentor_and_reference(resource_id, reference_id, comment_genus_type)

	Gets a list of comments of the given genus type corresponding to a resource and reference Id.

	Parameters:	
	resource_id (osid.id.Id) – the Id of the resource

	reference_id (osid.id.Id) – the Id of the reference

	comment_genus_type (osid.type.Type) – the comment genus type

	Returns:	the returned CommentList

	Return type:	osid.commenting.CommentList

	Raise:	NullArgument – resource_id, reference_id or comment_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Book.get_comments_by_genus_type_for_commentor_and_reference_on_date(resource_id, reference_id, comment_genus_type, from_, to)

	Gets a list of all comments corresponding to a resource and reference Id and effective during the entire given date range inclusive but not confined to the date range.

	Parameters:	
	resource_id (osid.id.Id) – the Id of the resource

	reference_id (osid.id.Id) – a reference Id

	comment_genus_type (osid.type.Type) – the comment genus type

	from (osid.calendaring.DateTime) – from date

	to (osid.calendaring.DateTime) – to date

	Returns:	the returned CommentList

	Return type:	osid.commenting.CommentList

	Raise:	InvalidArgument – to is less than from

	Raise:	NullArgument – resource_id, reference_id, comment_genus_type, from, or to is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Book.comments

	Gets all comments.

	Returns:	a list of comments

	Return type:	osid.commenting.CommentList

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Comment Query Methods

	
Book.can_search_comments()

	Tests if this user can perform comment searches.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an application that may not wish to offer search
operations to unauthorized users.

	Returns:	false if search methods are not authorized, true otherwise

	Return type:	boolean

	
Book.use_federated_book_view()

	Federates the view for methods in this session.
A federated view will include comments in books which are
children of this book in the book hierarchy.

	
Book.use_isolated_book_view()

	Isolates the view for methods in this session.
An isolated view restricts retrievals to this book only.

	
Book.comment_query

	Gets a comment query.

	Returns:	the comment query

	Return type:	osid.commenting.CommentQuery

	
Book.get_comments_by_query(comment_query)

	Gets a list of comments matching the given search.

	Parameters:	comment_query (osid.commenting.CommentQuery) – the search query array

	Returns:	the returned CommentList

	Return type:	osid.commenting.CommentList

	Raise:	NullArgument – comment_query is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – comment_query is not of this service

Comment Admin Methods

	
Book.can_create_comments()

	Tests if this user can create comments.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known creating a
Comment will result in a PermissionDenied. This is
intended as a hint to an application that may not wish to offer
create operations to unauthorized users.

	Returns:	false if Comment creation is not authorized, true otherwise

	Return type:	boolean

	
Book.can_create_comment_with_record_types(comment_record_types)

	Tests if this user can create a single Comment using the desired record types.
While CommentingManager.getCommentRecordTypes() can be used
to examine which records are supported, this method tests which
record(s) are required for creating a specific Comment.
Providing an empty array tests if a Comment can be created
with no records.

	Parameters:	comment_record_types (osid.type.Type[]) – array of comment record types

	Returns:	true if Comment creation using the specified record Types is supported, false otherwise

	Return type:	boolean

	Raise:	NullArgument – comment_record_types is null

	
Book.get_comment_form_for_create(reference_id, comment_record_types)

	Gets the comment form for creating new comments.
A new form should be requested for each create transaction.

	Parameters:	
	reference_id (osid.id.Id) – the Id for the reference object

	comment_record_types (osid.type.Type[]) – array of comment record types

	Returns:	the comment form

	Return type:	osid.commenting.CommentForm

	Raise:	NullArgument – reference_id or comment_record_types is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – unable to get form for requested record types

	
Book.create_comment(comment_form)

	Creates a new Comment.

	Parameters:	comment_form (osid.commenting.CommentForm) – the form for this Comment

	Returns:	the new Comment

	Return type:	osid.commenting.Comment

	Raise:	IllegalState – comment_form already used in a create transaction

	Raise:	InvalidArgument – one or more of the form elements is invalid

	Raise:	NullArgument – comment_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – comment_form did not originate from get_comment_form_for_create()

	
Book.can_update_comments()

	Tests if this user can update comments.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known updating a
Comment will result in a PermissionDenied. This is
intended as a hint to an application that may not wish to offer
update operations to unauthorized users.

	Returns:	false if Comment modification is not authorized, true otherwise

	Return type:	boolean

	
Book.get_comment_form_for_update(comment_id)

	Gets the comment form for updating an existing comment.
A new comment form should be requested for each update
transaction.

	Parameters:	comment_id (osid.id.Id) – the Id of the Comment

	Returns:	the comment form

	Return type:	osid.commenting.CommentForm

	Raise:	NotFound – comment_id is not found

	Raise:	NullArgument – comment_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Book.update_comment(comment_form)

	Updates an existing comment.

	Parameters:	comment_form (osid.commenting.CommentForm) – the form containing the elements to be updated

	Raise:	IllegalState – comment_form already used in an update transaction

	Raise:	InvalidArgument – the form contains an invalid value

	Raise:	NullArgument – comment_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – comment_form did not originate from get_comment_form_for_update()

	
Book.can_delete_comments()

	Tests if this user can delete comments.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known deleting an
Comment will result in a PermissionDenied. This is
intended as a hint to an application that may not wish to offer
delete operations to unauthorized users.

	Returns:	false if Comment deletion is not authorized, true otherwise

	Return type:	boolean

	
Book.delete_comment(comment_id)

	Deletes a Comment.

	Parameters:	comment_id (osid.id.Id) – the Id of the Comment to remove

	Raise:	NotFound – comment_id not found

	Raise:	NullArgument – comment_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Book.can_manage_comment_aliases()

	Tests if this user can manage Id aliases for Comnents.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known changing an alias
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer alias
operations to an unauthorized user.

	Returns:	false if Comment aliasing is not authorized, true otherwise

	Return type:	boolean

	
Book.alias_comment(comment_id, alias_id)

	Adds an Id to a Comment for the purpose of creating compatibility.
The primary Id of the Comment is determined by the
provider. The new Id performs as an alias to the primary
Id. If the alias is a pointer to another comment, it is
reassigned to the given comment Id.

	Parameters:	
	comment_id (osid.id.Id) – the Id of a Comment

	alias_id (osid.id.Id) – the alias Id

	Raise:	AlreadyExists – alias_id is already assigned

	Raise:	NotFound – comment_id not found

	Raise:	NullArgument – comment_id or alias_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Objects

Comment

	
class dlkit.commenting.objects.Comment

	Bases: dlkit.osid.objects.OsidRelationship

A Comment represents a comment and/or rating related to a reference object in a book.

	
reference_id

	Gets the Id of the referenced object to which this comment pertains.

	Returns:	the reference Id

	Return type:	osid.id.Id

	
commentor_id

	Gets the Id of the resource who created this comment.

	Returns:	the Resource Id

	Return type:	osid.id.Id

	
commentor

	Gets the resource who created this comment.

	Returns:	the Resource

	Return type:	osid.resource.Resource

	Raise:	OperationFailed – unable to complete request

	
commenting_agent_id

	Gets the Id of the agent who created this comment.

	Returns:	the Agent Id

	Return type:	osid.id.Id

	
commenting_agent

	Gets the agent who created this comment.

	Returns:	the Agent

	Return type:	osid.authentication.Agent

	Raise:	OperationFailed – unable to complete request

	
text

	Gets the comment text.

	Returns:	the comment text

	Return type:	osid.locale.DisplayText

	
has_rating()

	Tests if this comment includes a rating.

	Returns:	true if this comment includes a rating, false otherwise

	Return type:	boolean

	
rating_id

	Gets the Id of the Grade.

	Returns:	the Agent Id

	Return type:	osid.id.Id

	Raise:	IllegalState – has_rating() is false

	
rating

	Gets the Grade.

	Returns:	the Grade

	Return type:	osid.grading.Grade

	Raise:	IllegalState – has_rating() is false

	Raise:	OperationFailed – unable to complete request

	
get_comment_record(comment_record_type)

	Gets the comment record corresponding to the given Comment record Type.

This method is used to retrieve an object implementing the
requested record. The comment_record_type may be the
Type returned in get_record_types() or any of its
parents in a Type hierarchy where
has_record_type(comment_record_type) is true .

	Parameters:	comment_record_type (osid.type.Type) – the type of comment record to retrieve

	Returns:	the comment record

	Return type:	osid.commenting.records.CommentRecord

	Raise:	NullArgument – comment_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(comment_record_type) is false

Comment Form

	
class dlkit.commenting.objects.CommentForm

	Bases: dlkit.osid.objects.OsidRelationshipForm

This is the form for creating and updating Comment objects.

Like all OsidForm objects, various data elements may be set here
for use in the create and update methods in the
CommentAdminSession. For each data element that may be set,
metadata may be examined to provide display hints or data
constraints.

	
text_metadata

	Gets the metadata for the text.

	Returns:	metadata for the text

	Return type:	osid.Metadata

	
text

	Sets the text.

	Parameters:	text (string) – the new text

	Raise:	InvalidArgument – text is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – text is null

	
rating_metadata

	Gets the metadata for a rating.

	Returns:	metadata for the rating

	Return type:	osid.Metadata

	
rating

	Sets the rating.

	Parameters:	grade_id (osid.id.Id) – the new rating

	Raise:	InvalidArgument – grade_id is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – grade_id is null

	
get_comment_form_record(comment_record_type)

	Gets the CommentFormRecord corresponding to the given comment record Type.

	Parameters:	comment_record_type (osid.type.Type) – the comment record type

	Returns:	the comment form record

	Return type:	osid.commenting.records.CommentFormRecord

	Raise:	NullArgument – comment_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(comment_record_type) is false

Comment List

	
class dlkit.commenting.objects.CommentList

	Bases: dlkit.osid.objects.OsidList

Like all OsidLists, CommentList provides a means for accessing Comment elements sequentially either one at a time or many at a time.

Examples: while (cl.hasNext()) { Comment comment =
cl.getNextComment(); }

	or

	
	while (cl.hasNext()) {

	Comment[] comments = cl.getNextComments(cl.available());

}

	
next_comment

	Gets the next Comment in this list.

	Returns:	the next Comment in this list. The has_next() method should be used to test that a next Comment is available before calling this method.

	Return type:	osid.commenting.Comment

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

	
get_next_comments(n)

	Gets the next set of Comment elements in this list.

The specified amount must be less than or equal to the return
from available().

	Parameters:	n (cardinal) – the number of Comment elements requested which must be less than or equal to available()

	Returns:	an array of Comment elements.The length of the array is less than or equal to the number specified.

	Return type:	osid.commenting.Comment

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

Book Form

	
class dlkit.commenting.objects.BookForm

	Bases: dlkit.osid.objects.OsidCatalogForm

This is the form for creating and updating Books.

Like all OsidForm objects, various data elements may be set here
for use in the create and update methods in the
BookAdminSession. For each data element that may be set,
metadata may be examined to provide display hints or data
constraints.

	
get_book_form_record(book_record_type)

	Gets the BookFormRecord corresponding to the given book record Type.

	Parameters:	book_record_type (osid.type.Type) – the book record type

	Returns:	the book form record

	Return type:	osid.commenting.records.BookFormRecord

	Raise:	NullArgument – book_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(book_record_type) is false

Book List

	
class dlkit.commenting.objects.BookList

	Bases: dlkit.osid.objects.OsidList

Like all OsidLists, BookList provides a means for accessing Book elements sequentially either one at a time or many at a time.

Examples: while (bl.hasNext()) { Book book = bl.getNextBook(); }

	or

	
	while (bl.hasNext()) {

	Book[] books = bl.getNextBooks(bl.available());

}

	
next_book

	Gets the next Book in this list.

	Returns:	the next Book in this list. The has_next() method should be used to test that a next Book is available before calling this method.

	Return type:	osid.commenting.Book

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

	
get_next_books(n)

	Gets the next set of Book elements in this list.

The specified amount must be less than or equal to the return
from available().

	Parameters:	n (cardinal) – the number of Book elements requested which must be less than or equal to available()

	Returns:	an array of Book elements.The length of the array is less than or equal to the number specified.

	Return type:	osid.commenting.Book

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

Queries

Comment Query

	
class dlkit.commenting.queries.CommentQuery

	Bases: dlkit.osid.queries.OsidRelationshipQuery

This is the query for searching comments.

Each method specifies an AND term while multiple invocations of
the same method produce a nested OR.

	
match_reference_id(source_id, match)

	Sets reference Id.

	Parameters:	
	source_id (osid.id.Id) – a source Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – source_id is null

	
reference_id_terms

	

	
match_commentor_id(resource_id, match)

	Sets a resource Id to match a commentor.

	Parameters:	
	resource_id (osid.id.Id) – a resource Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – resource_id is null

	
commentor_id_terms

	

	
supports_commentor_query()

	Tests if a ResourceQuery is available.

	Returns:	true if a resource query is available, false otherwise

	Return type:	boolean

	
commentor_query

	Gets the query for a resource query.

Multiple retrievals produce a nested OR term.

	Returns:	the resource query

	Return type:	osid.resource.ResourceQuery

	Raise:	Unimplemented – supports_commentor_query() is false

	
commentor_terms

	

	
match_commenting_agent_id(agent_id, match)

	Sets an agent Id.

	Parameters:	
	agent_id (osid.id.Id) – an agent Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – agent_id is null

	
commenting_agent_id_terms

	

	
supports_commenting_agent_query()

	Tests if an AgentQuery is available.

	Returns:	true if an agent query is available, false otherwise

	Return type:	boolean

	
commenting_agent_query

	Gets the query for an agent query.

Multiple retrievals produce a nested OR term.

	Returns:	the agent query

	Return type:	osid.authentication.AgentQuery

	Raise:	Unimplemented – supports_commenting_agent_query() is false

	
commenting_agent_terms

	

	
match_text(text, string_match_type, match)

	Matches text.

	Parameters:	
	text (string) – the text

	string_match_type (osid.type.Type) – a string match type

	match (boolean) – true for a positive match, false for a negative match

	Raise:	InvalidArgument – text is not of string_match_type

	Raise:	NullArgument – text is null

	Raise:	Unsupported – supports_string_match_type(string_match_type) is false

	
match_any_text(match)

	Matches a comment that has any text assigned.

	Parameters:	match (boolean) – true to match comments with any text, false to match comments with no text

	
text_terms

	

	
match_rating_id(grade_id, match)

	Sets a grade Id.

	Parameters:	
	grade_id (osid.id.Id) – a grade Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – grade_id is null

	
rating_id_terms

	

	
supports_rating_query()

	Tests if a GradeQuery is available.

	Returns:	true if a rating query is available, false otherwise

	Return type:	boolean

	
rating_query

	Gets the query for a rating query.

Multiple retrievals produce a nested OR term.

	Returns:	the rating query

	Return type:	osid.grading.GradeQuery

	Raise:	Unimplemented – supports_rating_query() is false

	
match_any_rating(match)

	Matches books with any rating.

	Parameters:	match (boolean) – true to match comments with any rating, false to match comments with no ratings

	
rating_terms

	

	
match_book_id(book_id, match)

	Sets the book Id for this query to match comments assigned to books.

	Parameters:	
	book_id (osid.id.Id) – a book Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – book_id is null

	
book_id_terms

	

	
supports_book_query()

	Tests if a BookQuery is available.

	Returns:	true if a book query is available, false otherwise

	Return type:	boolean

	
book_query

	Gets the query for a book query.

Multiple retrievals produce a nested OR term.

	Returns:	the book query

	Return type:	osid.commenting.BookQuery

	Raise:	Unimplemented – supports_book_query() is false

	
book_terms

	

	
get_comment_query_record(comment_record_type)

	Gets the comment query record corresponding to the given Comment record Type.

Multiple record retrievals produce a nested OR term.

	Parameters:	comment_record_type (osid.type.Type) – a comment record type

	Returns:	the comment query record

	Return type:	osid.commenting.records.CommentQueryRecord

	Raise:	NullArgument – comment_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(comment_record_type) is false

Book Query

	
class dlkit.commenting.queries.BookQuery

	Bases: dlkit.osid.queries.OsidCatalogQuery

This is the query for searching books.

Each method specifies an AND term while multiple invocations of
the same method produce a nested OR.

	
match_comment_id(comment_id, match)

	Sets the comment Id for this query to match comments assigned to books.

	Parameters:	
	comment_id (osid.id.Id) – a comment Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – comment_id is null

	
comment_id_terms

	

	
supports_comment_query()

	Tests if a comment query is available.

	Returns:	true if a comment query is available, false otherwise

	Return type:	boolean

	
comment_query

	Gets the query for a comment.

	Returns:	the comment query

	Return type:	osid.commenting.CommentQuery

	Raise:	Unimplemented – supports_comment_query() is false

	
match_any_comment(match)

	Matches books with any comment.

	Parameters:	match (boolean) – true to match books with any comment, false to match books with no comments

	
comment_terms

	

	
match_ancestor_book_id(book_id, match)

	Sets the book Id for this query to match books that have the specified book as an ancestor.

	Parameters:	
	book_id (osid.id.Id) – a book Id

	match (boolean) – true for a positive match, a false for a negative match

	Raise:	NullArgument – book_id is null

	
ancestor_book_id_terms

	

	
supports_ancestor_book_query()

	Tests if a BookQuery is available.

	Returns:	true if a book query is available, false otherwise

	Return type:	boolean

	
ancestor_book_query

	Gets the query for a book.

Multiple retrievals produce a nested OR term.

	Returns:	the book query

	Return type:	osid.commenting.BookQuery

	Raise:	Unimplemented – supports_ancestor_book_query() is false

	
match_any_ancestor_book(match)

	Matches books with any ancestor.

	Parameters:	match (boolean) – true to match books with any ancestor, false to match root books

	
ancestor_book_terms

	

	
match_descendant_book_id(book_id, match)

	Sets the book Id for this query to match books that have the specified book as a descendant.

	Parameters:	
	book_id (osid.id.Id) – a book Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – book_id is null

	
descendant_book_id_terms

	

	
supports_descendant_book_query()

	Tests if a BookQuery is available.

	Returns:	true if a book query is available, false otherwise

	Return type:	boolean

	
descendant_book_query

	Gets the query for a book.

Multiple retrievals produce a nested OR term.

	Returns:	the book query

	Return type:	osid.commenting.BookQuery

	Raise:	Unimplemented – supports_descendant_book_query() is false

	
match_any_descendant_book(match)

	Matches books with any descendant.

	Parameters:	match (boolean) – true to match books with any descendant, false to match leaf books

	
descendant_book_terms

	

	
get_book_query_record(book_record_type)

	Gets the book query record corresponding to the given Book record Type.

Multiple record retrievals produce a nested boolean OR term.

	Parameters:	book_record_type (osid.type.Type) – a book record type

	Returns:	the book query record

	Return type:	osid.commenting.records.BookQueryRecord

	Raise:	NullArgument – book_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(book_record_type) is false

Records

Comment Record

	
class dlkit.commenting.records.CommentRecord

	Bases: dlkit.osid.records.OsidRecord

A record for a Comment.

The methods specified by the record type are available through the
underlying object.

Comment Query Record

	
class dlkit.commenting.records.CommentQueryRecord

	Bases: dlkit.osid.records.OsidRecord

A record for a CommentQuery.

The methods specified by the record type are available through the
underlying object.

Comment Form Record

	
class dlkit.commenting.records.CommentFormRecord

	Bases: dlkit.osid.records.OsidRecord

A record for a CommentForm.

The methods specified by the record type are available through the
underlying object.

Book Record

	
class dlkit.commenting.records.BookRecord

	Bases: dlkit.osid.records.OsidRecord

A record for a Book.

The methods specified by the record type are available through the
underlying object.

Book Query Record

	
class dlkit.commenting.records.BookQueryRecord

	Bases: dlkit.osid.records.OsidRecord

A record for a BookQuery.

The methods specified by the record type are available through the
underlying object.

Book Form Record

	
class dlkit.commenting.records.BookFormRecord

	Bases: dlkit.osid.records.OsidRecord

A record for a BookForm.

The methods specified by the record type are available through the
underlying object.

Learning

	Summary

	Service Managers
	Learning Manager

	Learning Profile Methods

	Objective Bank Lookup Methods

	Objective Bank Admin Methods

	Objective Bank Hierarchy Methods

	Objective Bank Hierarchy Design Methods

	Objective Bank
	Objective Bank

	Objective Lookup Methods

	Objective Admin Methods

	Objective Hierarchy Methods

	Objective Hierarchy Design Methods

	Objective Sequencing Methods

	Objective Requisite Methods

	Objective Requisite Assignment Methods

	Activity Lookup Methods

	Activity Admin Methods

	Objects
	Objective

	Objective Form

	Objective List

	Activity

	Activity Form

	Activity List

	Objective Bank Form

	Objective Bank List

	Queries
	Objective Query

	Activity Query

	Objective Bank Query

	Records
	Objective Record

	Objective Query Record

	Objective Form Record

	Activity Record

	Activity Query Record

	Activity Form Record

	Objective Bank Record

	Objective Bank Query Record

	Objective Bank Form Record

Summary

Learning Open Service Interface Definitions
learning version 3.0.0

The Learning OSID manages learning objectives. A learning Objective
describes measurable learning goals.

Objectives

Objectives describe measurable learning goals. A learning objective
may be measured by a related Assesment. Objectives may be
mapped to levels, A level is represented by a Grade which is used to
indicate a grade level or level of difficulty.

Objectives are hierarchical. An Objective with children
represents an objective that is inclusive of all its children. For
example, an Objective that represents learning in arithmetic may be
composed of objectives that represent learning in both addition and
subtraction.

Objectives may also have requisites. A requisite objective is one
that should be achieved before an objective is attempted.

Activities

An Activity describes actions that one can do to meet a learning
objective. An Activity includes a list of Assets to read or
watch, or a list of Courses to take, or a list of learning
Assessments to practice. An Activity may also represent other
learning activities such as taking a course or practicing an instrument.
An Activity is specific to an Objective where the reusability is
achieved based on what the Activity relates.

Proficiencies

A Proficiency is an OsidRelationship measuring the competence of
a Resource with respect to an Objective.

Objective Bank Cataloging

Objectives, Activities, and Proficiencies can be organized into
hierarchical ObjectiveBanks for the purposes of categorization and
federation.

Concept Mapping

A concept can be modeled as a learning Objective without any related
Assessment or Activities. In this scenario, an Objective
looks much like the simpler Subject in the Ontology OSID. The
Ontology OSID is constrained to qualifying concepts while the relations
found in an Objective allow for the quantification of the learning
concept and providing paths to self-learning.

The Topology OSID may also be used to construct and view a concept map.
While a Topology OSID Provider may be adapted from a Learning OSID or an
Ontology OSID, the topology for either would be interpreted from a
multi-parented hierarchy of the Objectives and Subjects
respectively.

Courses

The Learning OSID may be used in conjunction with the Course OSID to
identify dsired learning oitcomes from a course or to align the course
activities and syllabus with stated learning objectives. The Course OSID
describes learning from a structured curriculum management point of view
where the Learning OSID and allows for various objectives to be combined
and related without any regard to a prescribed curriculum.

Sub Packages

The Learning OSID contains a Learning Batch OSID for bulk management of
Objectives, Activities, and Proficiencies .

 Learning Open Service Interface Definitions
learning version 3.0.0

The Learning OSID manages learning objectives. A learning Objective
describes measurable learning goals.

Objectives

Objectives describe measurable learning goals. A learning objective
may be measured by a related Assesment. Objectives may be
mapped to levels, A level is represented by a Grade which is used to
indicate a grade level or level of difficulty.

Objectives are hierarchical. An Objective with children
represents an objective that is inclusive of all its children. For
example, an Objective that represents learning in arithmetic may be
composed of objectives that represent learning in both addition and
subtraction.

Objectives may also have requisites. A requisite objective is one
that should be achieved before an objective is attempted.

Activities

An Activity describes actions that one can do to meet a learning
objective. An Activity includes a list of Assets to read or
watch, or a list of Courses to take, or a list of learning
Assessments to practice. An Activity may also represent other
learning activities such as taking a course or practicing an instrument.
An Activity is specific to an Objective where the reusability is
achieved based on what the Activity relates.

Proficiencies

A Proficiency is an OsidRelationship measuring the competence of
a Resource with respect to an Objective.

Objective Bank Cataloging

Objectives, Activities, and Proficiencies can be organized into
hierarchical ObjectiveBanks for the purposes of categorization and
federation.

Concept Mapping

A concept can be modeled as a learning Objective without any related
Assessment or Activities. In this scenario, an Objective
looks much like the simpler Subject in the Ontology OSID. The
Ontology OSID is constrained to qualifying concepts while the relations
found in an Objective allow for the quantification of the learning
concept and providing paths to self-learning.

The Topology OSID may also be used to construct and view a concept map.
While a Topology OSID Provider may be adapted from a Learning OSID or an
Ontology OSID, the topology for either would be interpreted from a
multi-parented hierarchy of the Objectives and Subjects
respectively.

Courses

The Learning OSID may be used in conjunction with the Course OSID to
identify dsired learning oitcomes from a course or to align the course
activities and syllabus with stated learning objectives. The Course OSID
describes learning from a structured curriculum management point of view
where the Learning OSID and allows for various objectives to be combined
and related without any regard to a prescribed curriculum.

Sub Packages

The Learning OSID contains a Learning Batch OSID for bulk management of
Objectives, Activities, and Proficiencies .

Service Managers

Learning Manager

	
class dlkit.services.learning.LearningManager

	Bases: dlkit.osid.managers.OsidManager, dlkit.osid.sessions.OsidSession, dlkit.services.learning.LearningProfile

	
learning_batch_manager

	Gets a LearningBatchManager.

	Returns:	a LearningBatchManager

	Return type:	osid.learning.batch.LearningBatchManager

	Raise:	OperationFailed – unable to complete request

	Raise:	Unimplemented – supports_learning_batch() is false

Learning Profile Methods

	
LearningManager.supports_objective_lookup()

	Tests if an objective lookup service is supported.
An objective lookup service defines methods to access
objectives.

	Returns:	true if objective lookup is supported, false otherwise

	Return type:	boolean

	
LearningManager.supports_objective_admin()

	Tests if an objective administrative service is supported.

	Returns:	true if objective admin is supported, false otherwise

	Return type:	boolean

	
LearningManager.supports_objective_hierarchy()

	Tests if an objective hierarchy traversal is supported.

	Returns:	true if an objective hierarchy traversal is supported, false otherwise

	Return type:	boolean

	
LearningManager.supports_objective_hierarchy_design()

	Tests if an objective hierarchy design is supported.

	Returns:	true if an objective hierarchy design is supported, false otherwise

	Return type:	boolean

	
LearningManager.supports_objective_sequencing()

	Tests if an objective sequencing design is supported.

	Returns:	true if objective sequencing is supported, false otherwise

	Return type:	boolean

	
LearningManager.supports_objective_requisite()

	Tests if an objective requisite service is supported.

	Returns:	true if objective requisite service is supported, false otherwise

	Return type:	boolean

	
LearningManager.supports_objective_requisite_assignment()

	Tests if an objective requisite assignment service is supported.

	Returns:	true if objective requisite assignment service is supported, false otherwise

	Return type:	boolean

	
LearningManager.supports_activity_lookup()

	Tests if an activity lookup service is supported.

	Returns:	true if activity lookup is supported, false otherwise

	Return type:	boolean

	
LearningManager.supports_activity_admin()

	Tests if an activity administrative service is supported.

	Returns:	true if activity admin is supported, false otherwise

	Return type:	boolean

	
LearningManager.supports_objective_bank_lookup()

	Tests if an objective bank lookup service is supported.

	Returns:	true if objective bank lookup is supported, false otherwise

	Return type:	boolean

	
LearningManager.supports_objective_bank_admin()

	Tests if an objective bank administrative service is supported.

	Returns:	true if objective bank admin is supported, false otherwise

	Return type:	boolean

	
LearningManager.supports_objective_bank_hierarchy()

	Tests if an objective bank hierarchy traversal is supported.

	Returns:	true if an objective bank hierarchy traversal is supported, false otherwise

	Return type:	boolean

	
LearningManager.supports_objective_bank_hierarchy_design()

	Tests if objective bank hierarchy design is supported.

	Returns:	true if an objective bank hierarchy design is supported, false otherwise

	Return type:	boolean

	
LearningManager.objective_record_types

	Gets the supported Objective record types.

	Returns:	a list containing the supported Objective record types

	Return type:	osid.type.TypeList

	
LearningManager.objective_search_record_types

	Gets the supported Objective search record types.

	Returns:	a list containing the supported Objective search record types

	Return type:	osid.type.TypeList

	
LearningManager.activity_record_types

	Gets the supported Activity record types.

	Returns:	a list containing the supported Activity record types

	Return type:	osid.type.TypeList

	
LearningManager.activity_search_record_types

	Gets the supported Activity search record types.

	Returns:	a list containing the supported Activity search record types

	Return type:	osid.type.TypeList

	
LearningManager.proficiency_record_types

	Gets the supported Proficiency record types.

	Returns:	a list containing the supported Proficiency record types

	Return type:	osid.type.TypeList

	
LearningManager.proficiency_search_record_types

	Gets the supported Proficiency search types.

	Returns:	a list containing the supported Proficiency search types

	Return type:	osid.type.TypeList

	
LearningManager.objective_bank_record_types

	Gets the supported ObjectiveBank record types.

	Returns:	a list containing the supported ObjectiveBank record types

	Return type:	osid.type.TypeList

	
LearningManager.objective_bank_search_record_types

	Gets the supported objective bank search record types.

	Returns:	a list containing the supported ObjectiveBank search record types

	Return type:	osid.type.TypeList

Objective Bank Lookup Methods

	
LearningManager.can_lookup_objective_banks()

	Tests if this user can perform ObjectiveBank lookups.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an application that may opt not to offer lookup
operations to unauthorized users.

	Returns:	false if lookup methods are not authorized, true otherwise

	Return type:	boolean

	
LearningManager.use_comparative_objective_bank_view()

	The returns from the lookup methods may omit or translate elements based on this session, such as authorization, and not result in an error.
This view is used when greater interoperability is desired at
the expense of precision.

	
LearningManager.use_plenary_objective_bank_view()

	A complete view of the ObjectiveBank returns is desired.
Methods will return what is requested or result in an error.
This view is used when greater precision is desired at the
expense of interoperability.

	
LearningManager.get_objective_banks_by_ids(objective_bank_ids)

	Gets a ObjectiveBankList corresponding to the given IdList.
In plenary mode, the returned list contains all of the objective
banks specified in the Id list, in the order of the list,
including duplicates, or an error results if an Id in the
supplied list is not found or inaccessible. Otherwise,
inaccessible ObjectiveBank objects may be omitted from the
list and may present the elements in any order including
returning a unique set.

	Parameters:	objective_bank_ids (osid.id.IdList) – the list of Ids to retrieve

	Returns:	the returned ObjectiveBank list

	Return type:	osid.learning.ObjectiveBankList

	Raise:	NotFound – an Id was not found

	Raise:	NullArgument – objective_bank_ids is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.get_objective_banks_by_genus_type(objective_bank_genus_type)

	Gets a ObjectiveBankList corresponding to the given objective bank genus Type which does not include objective banks of types derived from the specified Type.
In plenary mode, the returned list contains all known objective
banks or an error results. Otherwise, the returned list may
contain only those objective banks that are accessible through
this session.

	Parameters:	objective_bank_genus_type (osid.type.Type) – an objective bank genus type

	Returns:	the returned ObjectiveBank list

	Return type:	osid.learning.ObjectiveBankList

	Raise:	NullArgument – objective_bank_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.get_objective_banks_by_parent_genus_type(objective_bank_genus_type)

	Gets a ObjectiveBankList corresponding to the given objective bank genus Type and include any additional objective banks with genus types derived from the specified Type.
In plenary mode, the returned list contains all known objective
banks or an error results. Otherwise, the returned list may
contain only those objective banks that are accessible through
this session.

	Parameters:	objective_bank_genus_type (osid.type.Type) – an objective bank genus type

	Returns:	the returned ObjectiveBank list

	Return type:	osid.learning.ObjectiveBankList

	Raise:	NullArgument – objective_bank_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.get_objective_banks_by_record_type(objective_bank_record_type)

	Gets a ObjectiveBankList containing the given objective bank record Type.
In plenary mode, the returned list contains all known objective
banks or an error results. Otherwise, the returned list may
contain only those objective banks that are accessible through
this session.

	Parameters:	objective_bank_record_type (osid.type.Type) – an objective bank record type

	Returns:	the returned ObjectiveBank list

	Return type:	osid.learning.ObjectiveBankList

	Raise:	NullArgument – objective_bank_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.get_objective_banks_by_provider(resource_id)

	Gets a ObjectiveBankList for the given provider.
In plenary mode, the returned list contains all known objective
banks or an error results. Otherwise, the returned list may
contain only those objective banks that are accessible through
this session.

	Parameters:	resource_id (osid.id.Id) – a resource Id

	Returns:	the returned ObjectiveBank list

	Return type:	osid.learning.ObjectiveBankList

	Raise:	NullArgument – resource_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.objective_banks

	Gets all ObjectiveBanks.
In plenary mode, the returned list contains all known objective
banks or an error results. Otherwise, the returned list may
contain only those objective banks that are accessible through
this session.

	Returns:	a ObjectiveBankList

	Return type:	osid.learning.ObjectiveBankList

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Objective Bank Admin Methods

	
LearningManager.can_create_objective_banks()

	Tests if this user can create ObjectiveBanks.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known creating an
ObjectiveBank will result in a PermissionDenied. This is
intended as a hint to an application that may not wish to offer
create operations to unauthorized users.

	Returns:	false if ObjectiveBank creation is not authorized, true otherwise

	Return type:	boolean

	
LearningManager.can_create_objective_bank_with_record_types(objective_bank_record_types)

	Tests if this user can create a single ObjectiveBank using the desired record types.
While LearningManager.getObjectiveBankRecordTypes() can be
used to examine which records are supported, this method tests
which record(s) are required for creating a specific
ObjectiveBank. Providing an empty array tests if an
ObjectiveBank can be created with no records.

	Parameters:	objective_bank_record_types (osid.type.Type[]) – array of objective bank record types

	Returns:	true if ObjectiveBank creation using the specified Types is supported, false otherwise

	Return type:	boolean

	Raise:	NullArgument – objective_bank_record_types is null

	
LearningManager.get_objective_bank_form_for_create(objective_bank_record_types)

	Gets the objective bank form for creating new objective banks.
A new form should be requested for each create transaction.

	Parameters:	objective_bank_record_types (osid.type.Type[]) – array of objective bank record types

	Returns:	the objective bank form

	Return type:	osid.learning.ObjectiveBankForm

	Raise:	NullArgument – objective_bank_record_types is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – unable to get form for requested record types.

	
LearningManager.create_objective_bank(objective_bank_form)

	Creates a new ObjectiveBank.

	Parameters:	objective_bank_form (osid.learning.ObjectiveBankForm) – the form for this ObjectiveBank

	Returns:	the new ObjectiveBank

	Return type:	osid.learning.ObjectiveBank

	Raise:	IllegalState – objective_bank_form already used in a create transaction

	Raise:	InvalidArgument – one or more of the form elements is invalid

	Raise:	NullArgument – objective_bank_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – objective_bank_form did not originate from get_objective_bank_form_for_create()

	
LearningManager.can_update_objective_banks()

	Tests if this user can update ObjectiveBanks.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known updating an
ObjectiveBank will result in a PermissionDenied. This is
intended as a hint to an application that may not wish to offer
update operations to unauthorized users.

	Returns:	false if ObjectiveBank modification is not authorized, true otherwise

	Return type:	boolean

	
LearningManager.get_objective_bank_form_for_update(objective_bank_id)

	Gets the objective bank form for updating an existing objective bank.
A new objective bank form should be requested for each update
transaction.

	Parameters:	objective_bank_id (osid.id.Id) – the Id of the ObjectiveBank

	Returns:	the objective bank form

	Return type:	osid.learning.ObjectiveBankForm

	Raise:	NotFound – objective_bank_id is not found

	Raise:	NullArgument – objective_bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.update_objective_bank(objective_bank_form)

	Updates an existing objective bank.

	Parameters:	objective_bank_form (osid.learning.ObjectiveBankForm) – the form containing the elements to be updated

	Raise:	IllegalState – objective_bank_form already used in an update transaction

	Raise:	InvalidArgument – the form contains an invalid value

	Raise:	NullArgument – objective_bank_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – objective_bank_form did not originate from get_objective_bank_form_for_update()

	
LearningManager.can_delete_objective_banks()

	Tests if this user can delete objective banks.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known deleting an
ObjectiveBank will result in a PermissionDenied. This is
intended as a hint to an application that may not wish to offer
delete operations to unauthorized users.

	Returns:	false if ObjectiveBank deletion is not authorized, true otherwise

	Return type:	boolean

	
LearningManager.delete_objective_bank(objective_bank_id)

	Deletes an ObjectiveBank.

	Parameters:	objective_bank_id (osid.id.Id) – the Id of the ObjectiveBank to remove

	Raise:	NotFound – objective_bank_id not found

	Raise:	NullArgument – objective_bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.can_manage_objective_bank_aliases()

	Tests if this user can manage Id aliases for ObjectiveBanks.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known changing an alias
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer alias
operations to an unauthorized user.

	Returns:	false if ObjectiveBank aliasing is not authorized, true otherwise

	Return type:	boolean

	
LearningManager.alias_objective_bank(objective_bank_id, alias_id)

	Adds an Id to an ObjectiveBank for the purpose of creating compatibility.
The primary Id of the ObjectiveBank is determined by the
provider. The new Id performs as an alias to the primary
Id. If the alias is a pointer to another objective bank, it
is reassigned to the given objective bank Id.

	Parameters:	
	objective_bank_id (osid.id.Id) – the Id of an ObjectiveBank

	alias_id (osid.id.Id) – the alias Id

	Raise:	AlreadyExists – alias_id is already assigned

	Raise:	NotFound – objective_bank_id not found

	Raise:	NullArgument – objective_bank_id or alias_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Objective Bank Hierarchy Methods

	
LearningManager.objective_bank_hierarchy_id

	Gets the hierarchy Id associated with this session.

	Returns:	the hierarchy Id associated with this session

	Return type:	osid.id.Id

	
LearningManager.objective_bank_hierarchy

	Gets the hierarchy associated with this session.

	Returns:	the hierarchy associated with this session

	Return type:	osid.hierarchy.Hierarchy

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.can_access_objective_bank_hierarchy()

	Tests if this user can perform hierarchy queries.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an an application that may not offer traversal
functions to unauthorized users.

	Returns:	false if hierarchy traversal methods are not authorized, true otherwise

	Return type:	boolean

	
LearningManager.use_comparative_objective_bank_view()

	The returns from the lookup methods may omit or translate elements based on this session, such as authorization, and not result in an error.
This view is used when greater interoperability is desired at
the expense of precision.

	
LearningManager.use_plenary_objective_bank_view()

	A complete view of the ObjectiveBank returns is desired.
Methods will return what is requested or result in an error.
This view is used when greater precision is desired at the
expense of interoperability.

	
LearningManager.root_objective_bank_ids

	Gets the root objective bank Ids in this hierarchy.

	Returns:	the root objective bank Ids

	Return type:	osid.id.IdList

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.root_objective_banks

	Gets the root objective banks in this objective bank hierarchy.

	Returns:	the root objective banks

	Return type:	osid.learning.ObjectiveBankList

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.has_parent_objective_banks(objective_bank_id)

	Tests if the ObjectiveBank has any parents.

	Parameters:	objective_bank_id (osid.id.Id) – the Id of an objective bank

	Returns:	true if the objective bank has parents, false otherwise

	Return type:	boolean

	Raise:	NotFound – objective_bank_id is not found

	Raise:	NullArgument – objective_bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.is_parent_of_objective_bank(id_, objective_bank_id)

	Tests if an Id is a direct parent of an objective bank.

	Parameters:	
	id (osid.id.Id) – an Id

	objective_bank_id (osid.id.Id) – the Id of an objective bank

	Returns:	true if this id is a parent of objective_bank_id, false otherwise

	Return type:	boolean

	Raise:	NotFound – objective_bank_id is not found

	Raise:	NullArgument – id or objective_bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.get_parent_objective_bank_ids(objective_bank_id)

	Gets the parent Ids of the given objective bank.

	Parameters:	objective_bank_id (osid.id.Id) – the Id of an objective bank

	Returns:	the parent Ids of the objective bank

	Return type:	osid.id.IdList

	Raise:	NotFound – objective_bank_id is not found

	Raise:	NullArgument – objective_bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.get_parent_objective_banks(objective_bank_id)

	Gets the parents of the given objective bank.

	Parameters:	objective_bank_id (osid.id.Id) – the Id of an objective bank

	Returns:	the parents of the objective bank

	Return type:	osid.learning.ObjectiveBankList

	Raise:	NotFound – objective_bank_id is not found

	Raise:	NullArgument – objective_bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.is_ancestor_of_objective_bank(id_, objective_bank_id)

	Tests if an Id is an ancestor of an objective bank.

	Parameters:	
	id (osid.id.Id) – an Id

	objective_bank_id (osid.id.Id) – the Id of an objective bank

	Returns:	true if this id is an ancestor of objective_bank_id, false otherwise

	Return type:	boolean

	Raise:	NotFound – objective_bank_id is not found

	Raise:	NullArgument – id or objective_bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.has_child_objective_banks(objective_bank_id)

	Tests if an objective bank has any children.

	Parameters:	objective_bank_id (osid.id.Id) – the Id of an objective bank

	Returns:	true if the objective_bank_id has children, false otherwise

	Return type:	boolean

	Raise:	NotFound – objective_bank_id is not found

	Raise:	NullArgument – objective_bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.is_child_of_objective_bank(id_, objective_bank_id)

	Tests if an objective bank is a direct child of another.

	Parameters:	
	id (osid.id.Id) – an Id

	objective_bank_id (osid.id.Id) – the Id of an objective bank

	Returns:	true if the id is a child of objective_bank_id, false otherwise

	Return type:	boolean

	Raise:	NotFound – objective_bank_id is not found

	Raise:	NullArgument – id or objective_bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.get_child_objective_bank_ids(objective_bank_id)

	Gets the child Ids of the given objective bank.

	Parameters:	objective_bank_id (osid.id.Id) – the Id to query

	Returns:	the children of the objective bank

	Return type:	osid.id.IdList

	Raise:	NotFound – objective_bank_id is not found

	Raise:	NullArgument – objective_bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.get_child_objective_banks(objective_bank_id)

	Gets the children of the given objective bank.

	Parameters:	objective_bank_id (osid.id.Id) – the Id to query

	Returns:	the children of the objective bank

	Return type:	osid.learning.ObjectiveBankList

	Raise:	NotFound – objective_bank_id is not found

	Raise:	NullArgument – objective_bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.is_descendant_of_objective_bank(id_, objective_bank_id)

	Tests if an Id is a descendant of an objective bank.

	Parameters:	
	id (osid.id.Id) – an Id

	objective_bank_id (osid.id.Id) – the Id of an objective bank

	Returns:	true if the id is a descendant of the objective_bank_id, false otherwise

	Return type:	boolean

	Raise:	NotFound – objective_bank_id is not found

	Raise:	NullArgument – id or objective_bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.get_objective_bank_node_ids(objective_bank_id, ancestor_levels, descendant_levels, include_siblings)

	Gets a portion of the hierarchy for the given objective bank.

	Parameters:	
	objective_bank_id (osid.id.Id) – the Id to query

	ancestor_levels (cardinal) – the maximum number of ancestor levels to include. A value of 0 returns no parents in the node.

	descendant_levels (cardinal) – the maximum number of descendant levels to include. A value of 0 returns no children in the node.

	include_siblings (boolean) – true to include the siblings of the given node, false to omit the siblings

	Returns:	a catalog node

	Return type:	osid.hierarchy.Node

	Raise:	NotFound – objective_bank_id not found

	Raise:	NullArgument – objective_bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.get_objective_bank_nodes(objective_bank_id, ancestor_levels, descendant_levels, include_siblings)

	Gets a portion of the hierarchy for the given objective bank.

	Parameters:	
	objective_bank_id (osid.id.Id) – the Id to query

	ancestor_levels (cardinal) – the maximum number of ancestor levels to include. A value of 0 returns no parents in the node.

	descendant_levels (cardinal) – the maximum number of descendant levels to include. A value of 0 returns no children in the node.

	include_siblings (boolean) – true to include the siblings of the given node, false to omit the siblings

	Returns:	an objective bank node

	Return type:	osid.learning.ObjectiveBankNode

	Raise:	NotFound – objective_bank_id not found

	Raise:	NullArgument – objective_bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Objective Bank Hierarchy Design Methods

	
LearningManager.objective_bank_hierarchy_id

	Gets the hierarchy Id associated with this session.

	Returns:	the hierarchy Id associated with this session

	Return type:	osid.id.Id

	
LearningManager.objective_bank_hierarchy

	Gets the hierarchy associated with this session.

	Returns:	the hierarchy associated with this session

	Return type:	osid.hierarchy.Hierarchy

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.can_modify_objective_bank_hierarchy()

	Tests if this user can change the hierarchy.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known performing any update
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer these
operations to an unauthorized user.

	Returns:	false if changing this hierarchy is not authorized, true otherwise

	Return type:	boolean

	
LearningManager.add_root_objective_bank(objective_bank_id)

	Adds a root objective bank.

	Parameters:	objective_bank_id (osid.id.Id) – the Id of an objective bank

	Raise:	AlreadyExists – objective_bank_id is already in hierarchy

	Raise:	NotFound – objective_bank_id not found

	Raise:	NullArgument – objective_bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.remove_root_objective_bank(objective_bank_id)

	Removes a root objective bank.

	Parameters:	objective_bank_id (osid.id.Id) – the Id of an objective bank

	Raise:	NotFound – objective_bank_id is not a root

	Raise:	NullArgument – objective_bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.add_child_objective_bank(objective_bank_id, child_id)

	Adds a child to an objective bank.

	Parameters:	
	objective_bank_id (osid.id.Id) – the Id of an objective bank

	child_id (osid.id.Id) – the Id of the new child

	Raise:	AlreadyExists – objective_bank_id is already a parent of child_id

	Raise:	NotFound – objective_bank_id or child_id not found

	Raise:	NullArgument – objective_bank_id or child_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.remove_child_objective_bank(objective_bank_id, child_id)

	Removes a child from an objective bank.

	Parameters:	
	objective_bank_id (osid.id.Id) – the Id of an objective bank

	child_id (osid.id.Id) – the Id of the child

	Raise:	NotFound – objective_bank_id not a parent of child_id

	Raise:	NullArgument – objective_bank_id or child_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
LearningManager.remove_child_objective_banks(objective_bank_id)

	Removes all children from an objective bank.

	Parameters:	objective_bank_id (osid.id.Id) – the Id of an objective bank

	Raise:	NotFound – objective_bank_id not in hierarchy

	Raise:	NullArgument – objective_bank_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Objective Bank

Objective Bank

	
class dlkit.services.learning.ObjectiveBank

	Bases: dlkit.osid.objects.OsidCatalog, dlkit.osid.sessions.OsidSession

	
get_objective_bank_record(objective_bank_record_type)

	Gets the objective bank record corresponding to the given ObjectiveBank record Type.
This method is used to retrieve an object implementing the
requested record. The objective_bank_record_type may be the
Type returned in get_record_types() or any of its
parents in a Type hierarchy where
has_record_type(objective_bank_record_type) is true .

	Parameters:	objective_bank_record_type (osid.type.Type) – an objective bank record type

	Returns:	the objective bank record

	Return type:	osid.learning.records.ObjectiveBankRecord

	Raise:	NullArgument – objective_bank_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(objective_bank_record_type) is false

Objective Lookup Methods

	
ObjectiveBank.can_lookup_objectives()

	Tests if this user can perform Objective lookups.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an application that may opt not to offer lookup
operations to unauthorized users.

	Returns:	false if lookup methods are not authorized, true otherwise

	Return type:	boolean

	
ObjectiveBank.use_comparative_objective_view()

	The returns from the lookup methods may omit or translate elements based on this session, such as authorization, and not result in an error.
This view is used when greater interoperability is desired at
the expense of precision.

	
ObjectiveBank.use_plenary_objective_view()

	A complete view of the Objective returns is desired.
Methods will return what is requested or result in an error.
This view is used when greater precision is desired at the
expense of interoperability.

	
ObjectiveBank.use_federated_objective_bank_view()

	Federates the view for methods in this session.
A federated view will include objectives in objective banks
which are children of this objective bank in the objective bank
hierarchy.

	
ObjectiveBank.use_isolated_objective_bank_view()

	Isolates the view for methods in this session.
An isolated view restricts lookups to this objective bank only.

	
ObjectiveBank.get_objective(objective_id)

	Gets the Objective specified by its Id.
In plenary mode, the exact Id is found or a NotFound
results. Otherwise, the returned Objective may have a
different Id than requested, such as the case where a
duplicate Id was assigned to an Objective and retained
for compatibility.

	Parameters:	objective_id (osid.id.Id) – Id of the Objective

	Returns:	the objective

	Return type:	osid.learning.Objective

	Raise:	NotFound – objective_id not found

	Raise:	NullArgument – objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.get_objectives_by_ids(objective_ids)

	Gets an ObjectiveList corresponding to the given IdList.
In plenary mode, the returned list contains all of the
objectives specified in the Id list, in the order of the
list, including duplicates, or an error results if an Id in
the supplied list is not found or inaccessible. Otherwise,
inaccessible Objectives may be omitted from the list and may
present the elements in any order including returning a unique
set.

	Parameters:	objective_ids (osid.id.IdList) – the list of Ids to retrieve

	Returns:	the returned Objective list

	Return type:	osid.learning.ObjectiveList

	Raise:	NotFound – an Id was not found

	Raise:	NullArgument – objective_ids is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.get_objectives_by_genus_type(objective_genus_type)

	Gets an ObjectiveList corresponding to the given objective genus Type which does not include objectives of genus types derived from the specified Type.
In plenary mode, the returned list contains all known objectives
or an error results. Otherwise, the returned list may contain
only those objectives that are accessible through this session.

	Parameters:	objective_genus_type (osid.type.Type) – an objective genus type

	Returns:	the returned Objective list

	Return type:	osid.learning.ObjectiveList

	Raise:	NullArgument – objective_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.get_objectives_by_parent_genus_type(objective_genus_type)

	Gets an ObjectiveList corresponding to the given objective genus Type and include any additional objective with genus types derived from the specified Type.
In plenary mode, the returned list contains all known objectives
or an error results. Otherwise, the returned list may contain
only those objectives that are accessible through this session

	Parameters:	objective_genus_type (osid.type.Type) – an objective genus type

	Returns:	the returned Objective list

	Return type:	osid.learning.ObjectiveList

	Raise:	NullArgument – objective_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.get_objectives_by_record_type(objective_record_type)

	Gets an ObjectiveList containing the given objective record Type.
In plenary mode, the returned list contains all known objectives
or an error results. Otherwise, the returned list may contain
only those objectives that are accessible through this session.

	Parameters:	objective_record_type (osid.type.Type) – an objective record type

	Returns:	the returned Objective list

	Return type:	osid.learning.ObjectiveList

	Raise:	NullArgument – objective_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.objectives

	Gets all Objectives.
In plenary mode, the returned list contains all known objectives
or an error results. Otherwise, the returned list may contain
only those objectives that are accessible through this session.

	Returns:	an ObjectiveList

	Return type:	osid.learning.ObjectiveList

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Objective Admin Methods

	
ObjectiveBank.can_create_objectives()

	Tests if this user can create Objectives.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known creating an Objective
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer create
operations to an unauthorized user.

	Returns:	false if Objective creation is not authorized, true otherwise

	Return type:	boolean

	
ObjectiveBank.can_create_objective_with_record_types(objective_record_types)

	Tests if this user can create a single Objective using the desired record types.
While LearningManager.getObjectiveRecordTypes() can be used
to examine which records are supported, this method tests which
record(s) are required for creating a specific Objective.
Providing an empty array tests if an Objective can be
created with no records.

	Parameters:	objective_record_types (osid.type.Type[]) – array of objective record types

	Returns:	true if Objective creation using the specified record Types is supported, false otherwise

	Return type:	boolean

	Raise:	NullArgument – objective_record_types is null

	
ObjectiveBank.get_objective_form_for_create(objective_record_types)

	Gets the objective form for creating new objectives.
A new form should be requested for each create transaction.

	Parameters:	objective_record_types (osid.type.Type[]) – array of objective record types

	Returns:	the objective form

	Return type:	osid.learning.ObjectiveForm

	Raise:	NullArgument – objective_record_types is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – unable to get form for requested record types

	
ObjectiveBank.create_objective(objective_form)

	Creates a new Objective.

	Parameters:	objective_form (osid.learning.ObjectiveForm) – the form for this Objective

	Returns:	the new Objective

	Return type:	osid.learning.Objective

	Raise:	IllegalState – objective_form already used in a create transaction

	Raise:	InvalidArgument – one or more of the form elements is invalid

	Raise:	NullArgument – objective_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – objective_form did not originate from get_objective_form_for_create()

	
ObjectiveBank.can_update_objectives()

	Tests if this user can update Objectives.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known updating an
Objective will result in a PermissionDenied. This is
intended as a hint to an application that may opt not to offer
update operations to an unauthorized user.

	Returns:	false if objective modification is not authorized, true otherwise

	Return type:	boolean

	
ObjectiveBank.get_objective_form_for_update(objective_id)

	Gets the objective form for updating an existing objective.
A new objective form should be requested for each update
transaction.

	Parameters:	objective_id (osid.id.Id) – the Id of the Objective

	Returns:	the objective form

	Return type:	osid.learning.ObjectiveForm

	Raise:	NotFound – objective_id is not found

	Raise:	NullArgument – objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.update_objective(objective_form)

	Updates an existing objective.

	Parameters:	objective_form (osid.learning.ObjectiveForm) – the form containing the elements to be updated

	Raise:	IllegalState – objective_form already used in an update transaction

	Raise:	InvalidArgument – the form contains an invalid value

	Raise:	NullArgument – objective_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – objective_form did not originate from get_objective_form_for_update()

	
ObjectiveBank.can_delete_objectives()

	Tests if this user can delete Objectives.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known deleting an
Objective will result in a PermissionDenied. This is
intended as a hint to an application that may opt not to offer
delete operations to an unauthorized user.

	Returns:	false if Objective deletion is not authorized, true otherwise

	Return type:	boolean

	
ObjectiveBank.delete_objective(objective_id)

	Deletes the Objective identified by the given Id.

	Parameters:	objective_id (osid.id.Id) – the Id of the Objective to delete

	Raise:	NotFound – an Objective was not found identified by the given Id

	Raise:	NullArgument – objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.can_manage_objective_aliases()

	Tests if this user can manage Id aliases for Objectives.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known changing an alias
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer alias
operations to an unauthorized user.

	Returns:	false if Objective aliasing is not authorized, true otherwise

	Return type:	boolean

	
ObjectiveBank.alias_objective(objective_id, alias_id)

	Adds an Id to an Objective for the purpose of creating compatibility.
The primary Id of the Objective is determined by the
provider. The new Id performs as an alias to the primary
Id. If the alias is a pointer to another objective, it is
reassigned to the given objective Id.

	Parameters:	
	objective_id (osid.id.Id) – the Id of an Objective

	alias_id (osid.id.Id) – the alias Id

	Raise:	AlreadyExists – alias_id is already assigned

	Raise:	NotFound – objective_id not found

	Raise:	NullArgument – objective_id or alias_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Objective Hierarchy Methods

	
ObjectiveBank.objective_hierarchy_id

	Gets the hierarchy Id associated with this session.

	Returns:	the hierarchy Id associated with this session

	Return type:	osid.id.Id

	
ObjectiveBank.objective_hierarchy

	Gets the hierarchy associated with this session.

	Returns:	the hierarchy associated with this session

	Return type:	osid.hierarchy.Hierarchy

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.can_access_objective_hierarchy()

	Tests if this user can perform hierarchy queries.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an an application that may not offer traversal
functions to unauthorized users.

	Returns:	false if hierarchy traversal methods are not authorized, true otherwise

	Return type:	boolean

	
ObjectiveBank.use_comparative_objective_view()

	The returns from the lookup methods may omit or translate elements based on this session, such as authorization, and not result in an error.
This view is used when greater interoperability is desired at
the expense of precision.

	
ObjectiveBank.use_plenary_objective_view()

	A complete view of the Objective returns is desired.
Methods will return what is requested or result in an error.
This view is used when greater precision is desired at the
expense of interoperability.

	
ObjectiveBank.root_objective_ids

	Gets the root objective Ids in this hierarchy.

	Returns:	the root objective Ids

	Return type:	osid.id.IdList

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.root_objectives

	Gets the root objective in this objective hierarchy.

	Returns:	the root objective

	Return type:	osid.learning.ObjectiveList

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.has_parent_objectives(objective_id)

	Tests if the Objective has any parents.

	Parameters:	objective_id (osid.id.Id) – the Id of an objective

	Returns:	true if the objective has parents, false otherwise

	Return type:	boolean

	Raise:	NotFound – objective_id is not found

	Raise:	NullArgument – objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.is_parent_of_objective(id_, objective_id)

	Tests if an Id is a direct parent of an objective.

	Parameters:	
	id (osid.id.Id) – an Id

	objective_id (osid.id.Id) – the Id of an objective

	Returns:	true if this id is a parent of objective_id, false otherwise

	Return type:	boolean

	Raise:	NotFound – objective_id is not found

	Raise:	NullArgument – id or objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.get_parent_objective_ids(objective_id)

	Gets the parent Ids of the given objective.

	Parameters:	objective_id (osid.id.Id) – the Id of an objective

	Returns:	the parent Ids of the objective

	Return type:	osid.id.IdList

	Raise:	NotFound – objective_id is not found

	Raise:	NullArgument – objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.get_parent_objectives(objective_id)

	Gets the parents of the given objective.

	Parameters:	objective_id (osid.id.Id) – the Id of an objective

	Returns:	the parents of the objective

	Return type:	osid.learning.ObjectiveList

	Raise:	NotFound – objective_id is not found

	Raise:	NullArgument – objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.is_ancestor_of_objective(id_, objective_id)

	Tests if an Id is an ancestor of an objective.

	Parameters:	
	id (osid.id.Id) – an Id

	objective_id (osid.id.Id) – the Id of an objective

	Returns:	true if this id is an ancestor of objective_id, false otherwise

	Return type:	boolean

	Raise:	NotFound – objective_id is not found

	Raise:	NullArgument – id or objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.has_child_objectives(objective_id)

	Tests if an objective has any children.

	Parameters:	objective_id (osid.id.Id) – the Id of an objective

	Returns:	true if the objective_id has children, false otherwise

	Return type:	boolean

	Raise:	NotFound – objective_id is not found

	Raise:	NullArgument – objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.is_child_of_objective(id_, objective_id)

	Tests if an objective is a direct child of another.

	Parameters:	
	id (osid.id.Id) – an Id

	objective_id (osid.id.Id) – the Id of an objective

	Returns:	true if the id is a child of objective_id, false otherwise

	Return type:	boolean

	Raise:	NotFound – objective_id is not found

	Raise:	NullArgument – id or objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.get_child_objective_ids(objective_id)

	Gets the child Ids of the given objective.

	Parameters:	objective_id (osid.id.Id) – the Id to query

	Returns:	the children of the objective

	Return type:	osid.id.IdList

	Raise:	NotFound – objective_id is not found

	Raise:	NullArgument – objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.get_child_objectives(objective_id)

	Gets the children of the given objective.

	Parameters:	objective_id (osid.id.Id) – the Id to query

	Returns:	the children of the objective

	Return type:	osid.learning.ObjectiveList

	Raise:	NotFound – objective_id is not found

	Raise:	NullArgument – objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.is_descendant_of_objective(id_, objective_id)

	Tests if an Id is a descendant of an objective.

	Parameters:	
	id (osid.id.Id) – an Id

	objective_id (osid.id.Id) – the Id of an objective

	Returns:	true if the id is a descendant of the objective_id, false otherwise

	Return type:	boolean

	Raise:	NotFound – objective_id is not found

	Raise:	NullArgument – id or objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.get_objective_node_ids(objective_id, ancestor_levels, descendant_levels, include_siblings)

	Gets a portion of the hierarchy for the given objective.

	Parameters:	
	objective_id (osid.id.Id) – the Id to query

	ancestor_levels (cardinal) – the maximum number of ancestor levels to include. A value of 0 returns no parents in the node.

	descendant_levels (cardinal) – the maximum number of descendant levels to include. A value of 0 returns no children in the node.

	include_siblings (boolean) – true to include the siblings of the given node, false to omit the siblings

	Returns:	a catalog node

	Return type:	osid.hierarchy.Node

	Raise:	NotFound – objective_id not found

	Raise:	NullArgument – objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.get_objective_nodes(objective_id, ancestor_levels, descendant_levels, include_siblings)

	Gets a portion of the hierarchy for the given objective.

	Parameters:	
	objective_id (osid.id.Id) – the Id to query

	ancestor_levels (cardinal) – the maximum number of ancestor levels to include. A value of 0 returns no parents in the node.

	descendant_levels (cardinal) – the maximum number of descendant levels to include. A value of 0 returns no children in the node.

	include_siblings (boolean) – true to include the siblings of the given node, false to omit the siblings

	Returns:	an objective node

	Return type:	osid.learning.ObjectiveNode

	Raise:	NotFound – objective_id not found

	Raise:	NullArgument – objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Objective Hierarchy Design Methods

	
ObjectiveBank.objective_hierarchy_id

	Gets the hierarchy Id associated with this session.

	Returns:	the hierarchy Id associated with this session

	Return type:	osid.id.Id

	
ObjectiveBank.objective_hierarchy

	Gets the hierarchy associated with this session.

	Returns:	the hierarchy associated with this session

	Return type:	osid.hierarchy.Hierarchy

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.can_modify_objective_hierarchy()

	Tests if this user can change the hierarchy.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known performing any update
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer these
operations to an unauthorized user.

	Returns:	false if changing this hierarchy is not authorized, true otherwise

	Return type:	boolean

	
ObjectiveBank.add_root_objective(objective_id)

	Adds a root objective.

	Parameters:	objective_id (osid.id.Id) – the Id of an objective

	Raise:	AlreadyExists – objective_id is already in hierarchy

	Raise:	NotFound – objective_id not found

	Raise:	NullArgument – objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.remove_root_objective(objective_id)

	Removes a root objective.

	Parameters:	objective_id (osid.id.Id) – the Id of an objective

	Raise:	NotFound – objective_id not found

	Raise:	NullArgument – objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.add_child_objective(objective_id, child_id)

	Adds a child to an objective.

	Parameters:	
	objective_id (osid.id.Id) – the Id of an objective

	child_id (osid.id.Id) – the Id of the new child

	Raise:	AlreadyExists – objective_id is already a parent of child_id

	Raise:	NotFound – objective_id or child_id not found

	Raise:	NullArgument – objective_id or child_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.remove_child_objective(objective_id, child_id)

	Removes a child from an objective.

	Parameters:	
	objective_id (osid.id.Id) – the Id of an objective

	child_id (osid.id.Id) – the Id of the new child

	Raise:	NotFound – objective_id not a parent of child_id

	Raise:	NullArgument – objective_id or child_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.remove_child_objectives(objective_id)

	Removes all children from an objective.

	Parameters:	objective_id (osid.id.Id) – the Id of an objective

	Raise:	NotFound – objective_id not found

	Raise:	NullArgument – objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Objective Sequencing Methods

	
ObjectiveBank.objective_hierarchy_id

	Gets the hierarchy Id associated with this session.

	Returns:	the hierarchy Id associated with this session

	Return type:	osid.id.Id

	
ObjectiveBank.objective_hierarchy

	Gets the hierarchy associated with this session.

	Returns:	the hierarchy associated with this session

	Return type:	osid.hierarchy.Hierarchy

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.can_sequence_objectives()

	Tests if this user can sequence objectives.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known performing any update
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer these
operations to an unauthorized user.

	Returns:	false if sequencing objectives is not authorized, true otherwise

	Return type:	boolean

	
ObjectiveBank.move_objective_ahead(parent_objective_id, reference_objective_id, objective_id)

	Moves an objective ahead of a refrence objective under the given parent.

	Parameters:	
	parent_objective_id (osid.id.Id) – the Id of the parent objective

	reference_objective_id (osid.id.Id) – the Id of the objective

	objective_id (osid.id.Id) – the Id of the objective to move ahead of reference_objective_id

	Raise:	NotFound – parent_objective_id, reference_objective_id, or objective_id not found, or reference_objective_id or objective_id is not a child of parent_objective_id

	Raise:	NullArgument – parent_objective_id, reference_objective_id, or id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.move_objective_behind(parent_objective_id, reference_objective_id, objective_id)

	Moves an objective behind a refrence objective under the given parent.

	Parameters:	
	parent_objective_id (osid.id.Id) – the Id of the parent objective

	reference_objective_id (osid.id.Id) – the Id of the objective

	objective_id (osid.id.Id) – the Id of the objective to move behind reference_objective_id

	Raise:	NotFound – parent_objective_id, reference_objective_id, or objective_id not found, or reference_objective_id or objective_id is not a child of parent_objective_id

	Raise:	NullArgument – parent_objective_id, reference_objective_id, or id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.sequence_objectives(parent_objective_id, objective_ids)

	Sequences a set of objectives under a parent.

	Parameters:	
	parent_objective_id (osid.id.Id) – the Id of the parent objective

	objective_ids (osid.id.Id[]) – the Id of the objectives

	Raise:	NotFound – parent_id or an objective_id not found, or an objective_id is not a child of parent_objective_id

	Raise:	NullArgument – paren_objectivet_id or objective_ids is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Objective Requisite Methods

	
ObjectiveBank.can_lookup_objective_prerequisites()

	Tests if this user can perform Objective lookups.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an application that may opt not to offer lookup
operations to unauthorized users.

	Returns:	false if lookup methods are not authorized, true otherwise

	Return type:	boolean

	
ObjectiveBank.use_comparative_objective_view()

	The returns from the lookup methods may omit or translate elements based on this session, such as authorization, and not result in an error.
This view is used when greater interoperability is desired at
the expense of precision.

	
ObjectiveBank.use_plenary_objective_view()

	A complete view of the Objective returns is desired.
Methods will return what is requested or result in an error.
This view is used when greater precision is desired at the
expense of interoperability.

	
ObjectiveBank.use_federated_objective_bank_view()

	Federates the view for methods in this session.
A federated view will include objectives in objective banks
which are children of this objective bank in the objective bank
hierarchy.

	
ObjectiveBank.use_isolated_objective_bank_view()

	Isolates the view for methods in this session.
An isolated view restricts lookups to this objective bank only.

	
ObjectiveBank.get_requisite_objectives(objective_id)

	Gets a list of Objectives that are the immediate requisites for the given Objective.
In plenary mode, the returned list contains all of the immediate
requisites, or an error results if an Objective is not found
or inaccessible. Otherwise, inaccessible Objectives may be
omitted from the list and may present the elements in any order
including returning a unique set.

	Parameters:	objective_id (osid.id.Id) – Id of the Objective

	Returns:	the returned requisite Objectives

	Return type:	osid.learning.ObjectiveList

	Raise:	NotFound – objective_id not found

	Raise:	NullArgument – objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.get_all_requisite_objectives(objective_id)

	Gets a list of Objectives that are the requisites for the given Objective including the requistes of the requisites, and so on.
In plenary mode, the returned list contains all of the immediate
requisites, or an error results if an Objective is not found
or inaccessible. Otherwise, inaccessible Objectives may be
omitted from the list and may present the elements in any order
including returning a unique set.

	Parameters:	objective_id (osid.id.Id) – Id of the Objective

	Returns:	the returned Objective list

	Return type:	osid.learning.ObjectiveList

	Raise:	NotFound – objective_id not found

	Raise:	NullArgument – objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.get_dependent_objectives(objective_id)

	Gets a list of Objectives that require the given Objective.
In plenary mode, the returned list contains all of the immediate
requisites, or an error results if an Objective is not found or
inaccessible. Otherwise, inaccessible Objectives may be
omitted from the list and may present the elements in any order
including returning a unique set.

	Parameters:	objective_id (osid.id.Id) – Id of the Objective

	Returns:	the returned Objective list

	Return type:	osid.learning.ObjectiveList

	Raise:	NotFound – objective_id not found

	Raise:	NullArgument – objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.is_objective_required(objective_id, required_objective_id)

	Tests if an objective is required before proceeding with an objective.
One objective may indirectly depend on another objective by way
of one or more other objectives.

	Parameters:	
	objective_id (osid.id.Id) – Id of the dependent Objective

	required_objective_id (osid.id.Id) – Id of the required Objective

	Returns:	true if objective_id depends on required_objective_id, false otherwise

	Return type:	boolean

	Raise:	NotFound – objective_id not found

	Raise:	NullArgument – objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.get_equivalent_objectives(objective_id)

	Gets a list of Objectives that are equivalent to the given Objective for the purpose of requisites.
An equivalent objective can satisfy the given objective. In
plenary mode, the returned list contains all of the equivalent
requisites, or an error results if an Objective is not found or
inaccessible. Otherwise, inaccessible Objectives may be
omitted from the list and may present the elements in any order
including returning a unique set.

	Parameters:	objective_id (osid.id.Id) – Id of the Objective

	Returns:	the returned Objective list

	Return type:	osid.learning.ObjectiveList

	Raise:	NotFound – objective_id not found

	Raise:	NullArgument – objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Objective Requisite Assignment Methods

	
ObjectiveBank.can_assign_requisites()

	Tests if this user can manage objective requisites.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known mapping methods in
this session will result in a PermissionDenied. This is
intended as a hint to an application that may opt not to offer
assignment operations to unauthorized users.

	Returns:	false if mapping is not authorized, true otherwise

	Return type:	boolean

	
ObjectiveBank.assign_objective_requisite(objective_id, requisite_objective_id)

	Creates a requirement dependency between two Objectives.

	Parameters:	
	objective_id (osid.id.Id) – the Id of the dependent Objective

	requisite_objective_id (osid.id.Id) – the Id of the required Objective

	Raise:	AlreadyExists – objective_id already mapped to requisite_objective_id

	Raise:	NotFound – objective_id or requisite_objective_id not found

	Raise:	NullArgument – objective_id or requisite_objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.unassign_objective_requisite(objective_id, requisite_objective_id)

	Removes an Objective requisite from an Objective.

	Parameters:	
	objective_id (osid.id.Id) – the Id of the Objective

	requisite_objective_id (osid.id.Id) – the Id of the required Objective

	Raise:	NotFound – objective_id or requisite_objective_id not found or objective_id not mapped to requisite_objective_id

	Raise:	NullArgument – objective_id or requisite_objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.assign_equivalent_objective(objective_id, equivalent_objective_id)

	Makes an objective equivalent to another objective for the purposes of satisfying a requisite.

	Parameters:	
	objective_id (osid.id.Id) – the Id of the principal Objective

	equivalent_objective_id (osid.id.Id) – the Id of the equivalent Objective

	Raise:	AlreadyExists – objective_id already mapped to equiavelnt_objective_id

	Raise:	NotFound – objective_id or equivalent_objective_id not found

	Raise:	NullArgument – objective_id or equivalent_objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.unassign_equivalent_objective(objective_id, equivalent_objective_id)

	Removes an Objective requisite from an Objective.

	Parameters:	
	objective_id (osid.id.Id) – the Id of the principal Objective

	equivalent_objective_id (osid.id.Id) – the Id of the equivalent Objective

	Raise:	NotFound – objective_id or equivalent_objective_id not found or objective_id is already equivalent to equivalent_objective_id

	Raise:	NullArgument – objective_id or equivalent_objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Activity Lookup Methods

	
ObjectiveBank.can_lookup_activities()

	Tests if this user can perform Activity lookups.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an application that may opt not to offer lookup
operations to unauthorized users.

	Returns:	false if lookup methods are not authorized, true otherwise

	Return type:	boolean

	
ObjectiveBank.use_comparative_activity_view()

	The returns from the lookup methods may omit or translate elements based on this session, such as authorization, and not result in an error.
This view is used when greater interoperability is desired at
the expense of precision.

	
ObjectiveBank.use_plenary_activity_view()

	A complete view of the Activity returns is desired.
Methods will return what is requested or result in an error.
This view is used when greater precision is desired at the
expense of interoperability.

	
ObjectiveBank.use_federated_objective_bank_view()

	Federates the view for methods in this session.
A federated view will include objectives in objective banks
which are children of this objective bank in the objective bank
hierarchy.

	
ObjectiveBank.use_isolated_objective_bank_view()

	Isolates the view for methods in this session.
An isolated view restricts lookups to this objective bank only.

	
ObjectiveBank.get_activity(activity_id)

	Gets the Activity specified by its Id.
In plenary mode, the exact Id is found or a NotFound
results. Otherwise, the returned Activity may have a
different Id than requested, such as the case where a
duplicate Id was assigned to a Activity and retained for
compatibility.

	Parameters:	activity_id (osid.id.Id) – Id of the Activity

	Returns:	the activity

	Return type:	osid.learning.Activity

	Raise:	NotFound – activity_id not found

	Raise:	NullArgument – activity_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.get_activities_by_ids(activity_ids)

	Gets an ActivityList corresponding to the given IdList.
In plenary mode, the returned list contains all of the
activities specified in the Id list, in the order of the
list, including duplicates, or an error results if an Id in
the supplied list is not found or inaccessible. Otherwise,
inaccessible Activities may be omitted from the list and may
present the elements in any order including returning a unique
set.

	Parameters:	activity_ids (osid.id.IdList) – the list of Ids to retrieve

	Returns:	the returned Activity list

	Return type:	osid.learning.ActivityList

	Raise:	NotFound – an Id was not found

	Raise:	NullArgument – activity_ids is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.get_activities_by_genus_type(activity_genus_type)

	Gets an ActivityList corresponding to the given activity genus Type which does not include activities of genus types derived from the specified Type.
In plenary mode, the returned list contains all known activities
or an error results. Otherwise, the returned list may contain
only those activities that are accessible through this session.

	Parameters:	activity_genus_type (osid.type.Type) – an activity genus type

	Returns:	the returned Activity list

	Return type:	osid.learning.ActivityList

	Raise:	NullArgument – activity_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.get_activities_by_parent_genus_type(activity_genus_type)

	Gets an ActivityList corresponding to the given activity genus Type and include any additional activity with genus types derived from the specified Type.
In plenary mode, the returned list contains all known activities
or an error results. Otherwise, the returned list may contain
only those activities that are accessible through this session.

	Parameters:	activity_genus_type (osid.type.Type) – an activity genus type

	Returns:	the returned Activity list

	Return type:	osid.learning.ActivityList

	Raise:	NullArgument – activity_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.get_activities_by_record_type(activity_record_type)

	Gets a ActivityList containing the given activity record Type.
In plenary mode, the returned list contains all known activities
or an error results. Otherwise, the returned list may contain
only those activities that are accessible through this session.

	Parameters:	activity_record_type (osid.type.Type) – an activity record type

	Returns:	the returned Activity list

	Return type:	osid.learning.ActivityList

	Raise:	NullArgument – activity_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.get_activities_for_objective(objective_id)

	Gets the activities for the given objective.
In plenary mode, the returned list contains all of the
activities mapped to the objective Id or an error results if
an Id in the supplied list is not found or inaccessible.
Otherwise, inaccessible Activities may be omitted from the
list and may present the elements in any order including
returning a unique set.

	Parameters:	objective_id (osid.id.Id) – Id of the Objective

	Returns:	list of enrollments

	Return type:	osid.learning.ActivityList

	Raise:	NotFound – objective_id not found

	Raise:	NullArgument – objective_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.get_activities_for_objectives(objective_ids)

	Gets the activities for the given objectives.
In plenary mode, the returned list contains all of the
activities specified in the objective Id list, in the order
of the list, including duplicates, or an error results if a
course offering Id in the supplied list is not found or
inaccessible. Otherwise, inaccessible Activities may be
omitted from the list and may present the elements in any order
including returning a unique set.

	Parameters:	objective_ids (osid.id.IdList) – list of objective Ids

	Returns:	list of activities

	Return type:	osid.learning.ActivityList

	Raise:	NotFound – an objective_id not found

	Raise:	NullArgument – objective_id_list is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.get_activities_by_asset(asset_id)

	Gets the activities for the given asset.
In plenary mode, the returned list contains all of the
activities mapped to the asset Id or an error results if an
Id in the supplied list is not found or inaccessible.
Otherwise, inaccessible Activities may be omitted from the
list and may present the elements in any order including
returning a unique set.

	Parameters:	asset_id (osid.id.Id) – Id of an Asset

	Returns:	list of activities

	Return type:	osid.learning.ActivityList

	Raise:	NotFound – asset_id not found

	Raise:	NullArgument – asset_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.get_activities_by_assets(asset_ids)

	Gets the activities for the given asset.
In plenary mode, the returned list contains all of the
activities mapped to the asset Id or an error results if an
Id in the supplied list is not found or inaccessible.
Otherwise, inaccessible Activities may be omitted from the
list and may present the elements in any order including
returning a unique set.

	Parameters:	asset_ids (osid.id.IdList) – Ids of Assets

	Returns:	list of activities

	Return type:	osid.learning.ActivityList

	Raise:	NotFound – an asset_id not found

	Raise:	NullArgument – asset_id_list is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.activities

	Gets all Activities.
In plenary mode, the returned list contains all known activites
or an error results. Otherwise, the returned list may contain
only those activities that are accessible through this session.

	Returns:	a ActivityList

	Return type:	osid.learning.ActivityList

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Activity Admin Methods

	
ObjectiveBank.can_create_activities()

	Tests if this user can create Activities.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known creating an
Activity will result in a PermissionDenied. This is
intended as a hint to an application that may opt not to offer
create operations to an unauthorized user.

	Returns:	false if Activity creation is not authorized, true otherwise

	Return type:	boolean

	
ObjectiveBank.can_create_activity_with_record_types(activity_record_types)

	Tests if this user can create a single Activity using the desired record types.
While LearningManager.getActivityRecordTypes() can be used
to examine which records are supported, this method tests which
record(s) are required for creating a specific Activity.
Providing an empty array tests if an Activity can be created
with no records.

	Parameters:	activity_record_types (osid.type.Type[]) – array of activity record types

	Returns:	true if Activity creation using the specified record Types is supported, false otherwise

	Return type:	boolean

	Raise:	NullArgument – activity_record_types is null

	
ObjectiveBank.get_activity_form_for_create(objective_id, activity_record_types)

	Gets the activity form for creating new activities.
A new form should be requested for each create transaction.

	Parameters:	
	objective_id (osid.id.Id) – the Id of the Objective

	activity_record_types (osid.type.Type[]) – array of activity record types

	Returns:	the activity form

	Return type:	osid.learning.ActivityForm

	Raise:	NotFound – objective_id is not found

	Raise:	NullArgument – objective_id or activity_record_types is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – unable to get form for requested record types

	
ObjectiveBank.create_activity(activity_form)

	Creates a new Activity.

	Parameters:	activity_form (osid.learning.ActivityForm) – the form for this Activity

	Returns:	the new Activity

	Return type:	osid.learning.Activity

	Raise:	IllegalState – activity_form already used in a create transaction

	Raise:	InvalidArgument – one or more of the form elements is invalid

	Raise:	NullArgument – activity_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – activity_form did not originate from get_activity_form_for_create()

	
ObjectiveBank.can_update_activities()

	Tests if this user can update Activities.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known updating an
Activity will result in a PermissionDenied. This is
intended as a hint to an application that may opt not to offer
update operations to an unauthorized user.

	Returns:	false if activity modification is not authorized, true otherwise

	Return type:	boolean

	
ObjectiveBank.get_activity_form_for_update(activity_id)

	Gets the activity form for updating an existing activity.
A new activity form should be requested for each update
transaction.

	Parameters:	activity_id (osid.id.Id) – the Id of the Activity

	Returns:	the activity form

	Return type:	osid.learning.ActivityForm

	Raise:	NotFound – activity_id is not found

	Raise:	NullArgument – activity_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.update_activity(activity_form)

	Updates an existing activity,.

	Parameters:	activity_form (osid.learning.ActivityForm) – the form containing the elements to be updated

	Raise:	IllegalState – activity_form already used in an update transaction

	Raise:	InvalidArgument – the form contains an invalid value

	Raise:	NullArgument – activity_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – activity_form did not originate from get_activity_form_for_update()

	
ObjectiveBank.can_delete_activities()

	Tests if this user can delete Activities.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known deleting an
Activity will result in a PermissionDenied. This is
intended as a hint to an application that may opt not to offer
delete operations to an unauthorized user.

	Returns:	false if Activity deletion is not authorized, true otherwise

	Return type:	boolean

	
ObjectiveBank.delete_activity(activity_id)

	Deletes the Activity identified by the given Id.

	Parameters:	activity_id (osid.id.Id) – the Id of the Activity to delete

	Raise:	NotFound – an Activity was not found identified by the given Id

	Raise:	NullArgument – activity_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
ObjectiveBank.can_manage_activity_aliases()

	Tests if this user can manage Id aliases for activities.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known changing an alias
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer alias
operations to an unauthorized user.

	Returns:	false if Activity aliasing is not authorized, true otherwise

	Return type:	boolean

	
ObjectiveBank.alias_activity(activity_id, alias_id)

	Adds an Id to an Activity for the purpose of creating compatibility.
The primary Id of the Activity is determined by the
provider. The new Id performs as an alias to the primary
Id. If the alias is a pointer to another activity, it is
reassigned to the given activity Id.

	Parameters:	
	activity_id (osid.id.Id) – the Id of an Activity

	alias_id (osid.id.Id) – the alias Id

	Raise:	AlreadyExists – alias_id is already assigned

	Raise:	NotFound – activity_id not found

	Raise:	NullArgument – activity_id or alias_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Objects

Objective

	
class dlkit.learning.objects.Objective

	Bases: dlkit.osid.objects.OsidObject, dlkit.osid.markers.Federateable

An Objective is a statable learning objective.

	
has_assessment()

	Tests if an assessment is associated with this objective.

	Returns:	true if an assessment exists, false otherwise

	Return type:	boolean

	
assessment_id

	Gets the assessment Id associated with this learning objective.

	Returns:	the assessment Id

	Return type:	osid.id.Id

	Raise:	IllegalState – has_assessment() is false

	
assessment

	Gets the assessment associated with this learning objective.

	Returns:	the assessment

	Return type:	osid.assessment.Assessment

	Raise:	IllegalState – has_assessment() is false

	Raise:	OperationFailed – unable to complete request

	
has_knowledge_category()

	Tests if this objective has a knowledge dimension.

	Returns:	true if a knowledge category exists, false otherwise

	Return type:	boolean

	
knowledge_category_id

	Gets the grade Id associated with the knowledge dimension.

	Returns:	the grade Id

	Return type:	osid.id.Id

	Raise:	IllegalState – has_knowledge_category() is false

	
knowledge_category

	Gets the grade associated with the knowledge dimension.

	Returns:	the grade

	Return type:	osid.grading.Grade

	Raise:	IllegalState – has_knowledge_category() is false

	Raise:	OperationFailed – unable to complete request

	
has_cognitive_process()

	Tests if this objective has a cognitive process type.

	Returns:	true if a cognitive process exists, false otherwise

	Return type:	boolean

	
cognitive_process_id

	Gets the grade Id associated with the cognitive process.

	Returns:	the grade Id

	Return type:	osid.id.Id

	Raise:	IllegalState – has_cognitive_process() is false

	
cognitive_process

	Gets the grade associated with the cognitive process.

	Returns:	the grade

	Return type:	osid.grading.Grade

	Raise:	IllegalState – has_cognitive_process() is false

	Raise:	OperationFailed – unable to complete request

	
get_objective_record(objective_record_type)

	Gets the objective bank record corresponding to the given Objective record Type.

This method is used to retrieve an object implementing the
requested record. The objective_record_type may be the
Type returned in get_record_types() or any of its
parents in a Type hierarchy where
has_record_type(objective_record_type) is true .

	Parameters:	objective_record_type (osid.type.Type) – an objective record type

	Returns:	the objective record

	Return type:	osid.learning.records.ObjectiveRecord

	Raise:	NullArgument – objective_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(objective_record_type) is false

Objective Form

	
class dlkit.learning.objects.ObjectiveForm

	Bases: dlkit.osid.objects.OsidObjectForm, dlkit.osid.objects.OsidFederateableForm

This is the form for creating and updating Objectives.

Like all OsidForm objects, various data elements may be set here
for use in the create and update methods in the
ObjectiveAdminSession. For each data element that may be set,
metadata may be examined to provide display hints or data
constraints.

	
assessment_metadata

	Gets the metadata for an assessment.

	Returns:	metadata for the assessment

	Return type:	osid.Metadata

	
assessment

	Sets the assessment.

	Parameters:	assessment_id (osid.id.Id) – the new assessment

	Raise:	InvalidArgument – assessment_id is invalid

	Raise:	NoAccess – assessment_id cannot be modified

	Raise:	NullArgument – assessment_id is null

	
knowledge_category_metadata

	Gets the metadata for a knowledge category.

	Returns:	metadata for the knowledge category

	Return type:	osid.Metadata

	
knowledge_category

	Sets the knowledge category.

	Parameters:	grade_id (osid.id.Id) – the new knowledge category

	Raise:	InvalidArgument – grade_id is invalid

	Raise:	NoAccess – grade_id cannot be modified

	Raise:	NullArgument – grade_id is null

	
cognitive_process_metadata

	Gets the metadata for a cognitive process.

	Returns:	metadata for the cognitive process

	Return type:	osid.Metadata

	
cognitive_process

	Sets the cognitive process.

	Parameters:	grade_id (osid.id.Id) – the new cognitive process

	Raise:	InvalidArgument – grade_id is invalid

	Raise:	NoAccess – grade_id cannot be modified

	Raise:	NullArgument – grade_id is null

	
get_objective_form_record(objective_record_type)

	Gets the ObjectiveFormRecord corresponding to the given objective record Type.

	Parameters:	objective_record_type (osid.type.Type) – the objective record type

	Returns:	the objective form record

	Return type:	osid.learning.records.ObjectiveFormRecord

	Raise:	NullArgument – objective_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(objective_record_type) is false

Objective List

	
class dlkit.learning.objects.ObjectiveList

	Bases: dlkit.osid.objects.OsidList

Like all OsidLists, ObjectiveList provides a means for accessing Objective elements sequentially either one at a time or many at a time.

Examples: while (ol.hasNext()) { Objective objective =
ol.getNextObjective(); }

	or

	
	while (ol.hasNext()) {

	Objective[] objectives = ol.getNextObjectives(ol.available());

}

	
next_objective

	Gets the next Objective in this list.

	Returns:	the next Objective in this list. The has_next() method should be used to test that a next Objective is available before calling this method.

	Return type:	osid.learning.Objective

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

	
get_next_objectives(n)

	Gets the next set of Objective elements in this list which must be less than or equal to the number returned from available().

	Parameters:	n (cardinal) – the number of Objective elements requested which should be less than or equal to available()

	Returns:	an array of Objective elements.The length of the array is less than or equal to the number specified.

	Return type:	osid.learning.Objective

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

Activity

	
class dlkit.learning.objects.Activity

	Bases: dlkit.osid.objects.OsidObject, dlkit.osid.markers.Subjugateable

An Activity represents learning material or other learning activities to meet an objective.

An Activity has may relate to a set of Asssts for self learning,
recommended Courses to take, or a learning Assessment. The
learning Assessment differs from the Objective
Assessment in that the latter used to test for proficiency in
the Objective.

Generally, an Activity should focus on one of assets, courses,
assessments, or some other specific activity related to the
objective described or related in the ActivityRecord.

	
objective_id

	Gets the Id of the related objective.

	Returns:	the objective Id

	Return type:	osid.id.Id

	
objective

	Gets the related objective.

	Returns:	the related objective

	Return type:	osid.learning.Objective

	Raise:	OperationFailed – unable to complete request

	
is_asset_based_activity()

	Tests if this is an asset based activity.

	Returns:	true if this activity is based on assets, false otherwise

	Return type:	boolean

	
asset_ids

	Gets the Ids of any assets associated with this activity.

	Returns:	list of asset Ids

	Return type:	osid.id.IdList

	Raise:	IllegalState – is_asset_based_activity() is false

	
assets

	Gets any assets associated with this activity.

	Returns:	list of assets

	Return type:	osid.repository.AssetList

	Raise:	IllegalState – is_asset_based_activity() is false

	Raise:	OperationFailed – unable to complete request

	
is_course_based_activity()

	Tests if this is a course based activity.

	Returns:	true if this activity is based on courses, false otherwise

	Return type:	boolean

	
course_ids

	Gets the Ids of any courses associated with this activity.

	Returns:	list of course Ids

	Return type:	osid.id.IdList

	Raise:	IllegalState – is_course_based_activity() is false

	
courses

	Gets any courses associated with this activity.

	Returns:	list of courses

	Return type:	osid.course.CourseList

	Raise:	IllegalState – is_course_based_activity() is false

	Raise:	OperationFailed – unable to complete request

	
is_assessment_based_activity()

	Tests if this is an assessment based activity.

These assessments are for learning the objective and not for
assessing prodiciency in the objective.

	Returns:	true if this activity is based on assessments, false otherwise

	Return type:	boolean

	
assessment_ids

	Gets the Ids of any assessments associated with this activity.

	Returns:	list of assessment Ids

	Return type:	osid.id.IdList

	Raise:	IllegalState – is_assessment_based_activity() is false

	
assessments

	Gets any assessments associated with this activity.

	Returns:	list of assessments

	Return type:	osid.assessment.AssessmentList

	Raise:	IllegalState – is_assessment_based_activity() is false

	Raise:	OperationFailed – unable to complete request

	
get_activity_record(activity_record_type)

	Gets the activity record corresponding to the given Activity record Type.

This method is used to retrieve an object implementing the
requested record. The activity_record_type may be the
Type returned in get_record_types() or any of its
parents in a Type hierarchy where
has_record_type(activity_record_type) is true .

	Parameters:	activity_record_type (osid.type.Type) – the type of the record to retrieve

	Returns:	the activity record

	Return type:	osid.learning.records.ActivityRecord

	Raise:	NullArgument – activity_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(activity_record_type) is false

Activity Form

	
class dlkit.learning.objects.ActivityForm

	Bases: dlkit.osid.objects.OsidObjectForm, dlkit.osid.objects.OsidSubjugateableForm

This is the form for creating and updating Activities.

Like all OsidForm objects, various data elements may be set here
for use in the create and update methods in the
ActivityAdminSession. For each data element that may be set,
metadata may be examined to provide display hints or data
constraints.

	
assets_metadata

	Gets the metadata for the assets.

	Returns:	metadata for the assets

	Return type:	osid.Metadata

	
assets

	Sets the assets.

	Parameters:	asset_ids (osid.id.Id[]) – the asset Ids

	Raise:	InvalidArgument – asset_ids is invalid

	Raise:	NullArgument – asset_ids is null

	Raise:	NoAccess – Metadata.isReadOnly() is true

	
courses_metadata

	Gets the metadata for the courses.

	Returns:	metadata for the courses

	Return type:	osid.Metadata

	
courses

	Sets the courses.

	Parameters:	course_ids (osid.id.Id[]) – the course Ids

	Raise:	InvalidArgument – course_ids is invalid

	Raise:	NullArgument – course_ids is null

	Raise:	NoAccess – Metadata.isReadOnly() is true

	
assessments_metadata

	Gets the metadata for the assessments.

	Returns:	metadata for the assessments

	Return type:	osid.Metadata

	
assessments

	Sets the assessments.

	Parameters:	assessment_ids (osid.id.Id[]) – the assessment Ids

	Raise:	InvalidArgument – assessment_ids is invalid

	Raise:	NullArgument – assessment_ids is null

	Raise:	NoAccess – Metadata.isReadOnly() is true

	
get_activity_form_record(activity_record_type)

	Gets the ActivityFormRecord corresponding to the given activity record Type.

	Parameters:	activity_record_type (osid.type.Type) – the activity record type

	Returns:	the activity form record

	Return type:	osid.learning.records.ActivityFormRecord

	Raise:	NullArgument – activity_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(activity_record_type) is false

Activity List

	
class dlkit.learning.objects.ActivityList

	Bases: dlkit.osid.objects.OsidList

Like all OsidLists, ActivityList provides a means for accessing Activity elements sequentially either one at a time or many at a time.

Examples: while (al.hasNext()) { Activity activity =
al.getNextActivity(); }

	or

	
	while (al.hasNext()) {

	Activity[] activities = al.getNextActivities(al.available());

}

	
next_activity

	Gets the next Activity in this list.

	Returns:	the next Activity in this list. The has_next() method should be used to test that a next Activity is available before calling this method.

	Return type:	osid.learning.Activity

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

	
get_next_activities(n)

	Gets the next set of Activity elements in this list which must be less than or equal to the number returned from available().

	Parameters:	n (cardinal) – the number of Activity elements requested which should be less than or equal to available()

	Returns:	an array of Activity elements.The length of the array is less than or equal to the number specified.

	Return type:	osid.learning.Activity

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

Objective Bank Form

	
class dlkit.learning.objects.ObjectiveBankForm

	Bases: dlkit.osid.objects.OsidCatalogForm

This is the form for creating and updating objective banks.

Like all OsidForm objects, various data elements may be set here
for use in the create and update methods in the
ObjectiveBankAdminSession. For each data element that may be
set, metadata may be examined to provide display hints or data
constraints.

	
get_objective_bank_form_record(objective_bank_record_type)

	Gets the ObjectiveBankFormRecord corresponding to the given objective bank record Type.

	Parameters:	objective_bank_record_type (osid.type.Type) – an objective bank record type

	Returns:	the objective bank form record

	Return type:	osid.learning.records.ObjectiveBankFormRecord

	Raise:	NullArgument – objective_bank_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(objective_bank_record_type) is false

Objective Bank List

	
class dlkit.learning.objects.ObjectiveBankList

	Bases: dlkit.osid.objects.OsidList

Like all OsidLists, ObjectiveBankList provides a means for accessing ObjectiveBank elements sequentially either one at a time or many at a time.

Examples: while (obl.hasNext()) { ObjectiveBank objectiveBanks =
obl.getNextObjectiveBank(); }

	or

	
	while (obl.hasNext()) {

	ObjectiveBank[] objectivBanks = obl.getNextObjectiveBanks(obl.available());

}

	
next_objective_bank

	Gets the next ObjectiveBank in this list.

	Returns:	the next ObjectiveBank in this list. The has_next() method should be used to test that a next ObjectiveBank is available before calling this method.

	Return type:	osid.learning.ObjectiveBank

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

	
get_next_objective_banks(n)

	Gets the next set of ObjectiveBank elements in this list which must be less than or equal to the return from available().

	Parameters:	n (cardinal) – the number of ObjectiveBank elements requested which must be less than or equal to available()

	Returns:	an array of ObjectiveBank elements.The length of the array is less than or equal to the number specified.

	Return type:	osid.learning.ObjectiveBank

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

Queries

Objective Query

	
class dlkit.learning.queries.ObjectiveQuery

	Bases: dlkit.osid.queries.OsidObjectQuery, dlkit.osid.queries.OsidFederateableQuery

This is the query for searching objectives.

Each method match request produces an AND term while multiple
invocations of a method produces a nested OR.

	
match_assessment_id(assessment_id, match)

	Sets the assessment Id for this query.

	Parameters:	
	assessment_id (osid.id.Id) – an assessment Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – assessment_id is null

	
assessment_id_terms

	

	
supports_assessment_query()

	Tests if an AssessmentQuery is available for querying activities.

	Returns:	true if an assessment query is available, false otherwise

	Return type:	boolean

	
assessment_query

	Gets the query for an assessment.

Multiple retrievals produce a nested OR term.

	Returns:	the assessment query

	Return type:	osid.assessment.AssessmentQuery

	Raise:	Unimplemented – supports_assessment_query() is false

	
match_any_assessment(match)

	Matches an objective that has any assessment assigned.

	Parameters:	match (boolean) – true to match objectives with any assessment, false to match objectives with no assessment

	
assessment_terms

	

	
match_knowledge_category_id(grade_id, match)

	Sets the knowledge category Id for this query.

	Parameters:	
	grade_id (osid.id.Id) – a grade Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – grade_id is null

	
knowledge_category_id_terms

	

	
supports_knowledge_category_query()

	Tests if a GradeQuery is available for querying knowledge categories.

	Returns:	true if a grade query is available, false otherwise

	Return type:	boolean

	
knowledge_category_query

	Gets the query for a knowledge category.

Multiple retrievals produce a nested OR term.

	Returns:	the grade query

	Return type:	osid.grading.GradeQuery

	Raise:	Unimplemented – supports_knowledge_category_query() is false

	
match_any_knowledge_category(match)

	Matches an objective that has any knowledge category.

	Parameters:	match (boolean) – true to match objectives with any knowledge category, false to match objectives with no knowledge category

	
knowledge_category_terms

	

	
match_cognitive_process_id(grade_id, match)

	Sets the cognitive process Id for this query.

	Parameters:	
	grade_id (osid.id.Id) – a grade Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – grade_id is null

	
cognitive_process_id_terms

	

	
supports_cognitive_process_query()

	Tests if a GradeQuery is available for querying cognitive processes.

	Returns:	true if a grade query is available, false otherwise

	Return type:	boolean

	
cognitive_process_query

	Gets the query for a cognitive process.

Multiple retrievals produce a nested OR term.

	Returns:	the grade query

	Return type:	osid.grading.GradeQuery

	Raise:	Unimplemented – supports_cognitive_process_query() is false

	
match_any_cognitive_process(match)

	Matches an objective that has any cognitive process.

	Parameters:	match (boolean) – true to match objectives with any cognitive process, false to match objectives with no cognitive process

	
cognitive_process_terms

	

	
match_activity_id(activity_id, match)

	Sets the activity Id for this query.

	Parameters:	
	activity_id (osid.id.Id) – an activity Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – activity_id is null

	
activity_id_terms

	

	
supports_activity_query()

	Tests if an ActivityQuery is available for querying activities.

	Returns:	true if an activity query is available, false otherwise

	Return type:	boolean

	
activity_query

	Gets the query for an activity.

Multiple retrievals produce a nested OR term.

	Returns:	the activity query

	Return type:	osid.learning.ActivityQuery

	Raise:	Unimplemented – supports_activity_query() is false

	
match_any_activity(match)

	Matches an objective that has any related activity.

	Parameters:	match (boolean) – true to match objectives with any activity, false to match objectives with no activity

	
activity_terms

	

	
match_requisite_objective_id(requisite_objective_id, match)

	Sets the requisite objective Id for this query.

	Parameters:	
	requisite_objective_id (osid.id.Id) – a requisite objective Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – requisite_objective_id is null

	
requisite_objective_id_terms

	

	
supports_requisite_objective_query()

	Tests if an ObjectiveQuery is available for querying requisite objectives.

	Returns:	true if an objective query is available, false otherwise

	Return type:	boolean

	
requisite_objective_query

	Gets the query for a requisite objective.

Multiple retrievals produce a nested OR term.

	Returns:	the objective query

	Return type:	osid.learning.ObjectiveQuery

	Raise:	Unimplemented – supports_requisite_objective_query() is false

	
match_any_requisite_objective(match)

	Matches an objective that has any related requisite.

	Parameters:	match (boolean) – true to match objectives with any requisite, false to match objectives with no requisite

	
requisite_objective_terms

	

	
match_dependent_objective_id(dependent_objective_id, match)

	Sets the dependent objective Id to query objectives dependent on the given objective.

	Parameters:	
	dependent_objective_id (osid.id.Id) – a dependent objective Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – dependent_objective_id is null

	
dependent_objective_id_terms

	

	
supports_depndent_objective_query()

	Tests if an ObjectiveQuery is available for querying dependent objectives.

	Returns:	true if an objective query is available, false otherwise

	Return type:	boolean

	
dependent_objective_query

	Gets the query for a dependent objective.

Multiple retrievals produce a nested OR term.

	Returns:	the objective query

	Return type:	osid.learning.ObjectiveQuery

	Raise:	Unimplemented – supports_dependent_objective_query() is false

	
match_any_dependent_objective(match)

	Matches an objective that has any related dependents.

	Parameters:	match (boolean) – true to match objectives with any dependent, false to match objectives with no dependents

	
dependent_objective_terms

	

	
match_equivalent_objective_id(equivalent_objective_id, match)

	Sets the equivalent objective Id to query equivalents.

	Parameters:	
	equivalent_objective_id (osid.id.Id) – an equivalent objective Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – equivalent_objective_id is null

	
equivalent_objective_id_terms

	

	
supports_equivalent_objective_query()

	Tests if an ObjectiveQuery is available for querying equivalent objectives.

	Returns:	true if an objective query is available, false otherwise

	Return type:	boolean

	
equivalent_objective_query

	Gets the query for an equivalent objective.

Multiple retrievals produce a nested OR term.

	Returns:	the objective query

	Return type:	osid.learning.ObjectiveQuery

	Raise:	Unimplemented – supports_equivalent_objective_query() is false

	
match_any_equivalent_objective(match)

	Matches an objective that has any related equivalents.

	Parameters:	match (boolean) – true to match objectives with any equivalent, false to match objectives with no equivalents

	
equivalent_objective_terms

	

	
match_ancestor_objective_id(objective_id, match)

	Sets the objective Id for this query to match objectives that have the specified objective as an ancestor.

	Parameters:	
	objective_id (osid.id.Id) – an objective Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – objective_id is null

	
ancestor_objective_id_terms

	

	
supports_ancestor_objective_query()

	Tests if an ObjectiveQuery is available.

	Returns:	true if an objective query is available, false otherwise

	Return type:	boolean

	
ancestor_objective_query

	Gets the query for an objective.

Multiple retrievals produce a nested OR term.

	Returns:	the objective query

	Return type:	osid.learning.ObjectiveQuery

	Raise:	Unimplemented – supports_ancestor_objective_query() is false

	
match_any_ancestor_objective(match)

	Matches objectives that have any ancestor.

	Parameters:	match (boolean) – true to match objective with any ancestor, false to match root objectives

	
ancestor_objective_terms

	

	
match_descendant_objective_id(objective_id, match)

	Sets the objective Id for this query to match objectives that have the specified objective as a descendant.

	Parameters:	
	objective_id (osid.id.Id) – an objective Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – objective_id is null

	
descendant_objective_id_terms

	

	
supports_descendant_objective_query()

	Tests if an ObjectiveQuery is available.

	Returns:	true if an objective query is available, false otherwise

	Return type:	boolean

	
descendant_objective_query

	Gets the query for an objective.

Multiple retrievals produce a nested OR term.

	Returns:	the objective query

	Return type:	osid.learning.ObjectiveQuery

	Raise:	Unimplemented – supports_descendant_objective_query() is false

	
match_any_descendant_objective(match)

	Matches objectives that have any ancestor.

	Parameters:	match (boolean) – true to match objectives with any ancestor, false to match leaf objectives

	
descendant_objective_terms

	

	
match_objective_bank_id(objective_bank_id, match)

	Sets the objective bank Id for this query.

	Parameters:	
	objective_bank_id (osid.id.Id) – an objective bank Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – objective_bank_id is null

	
objective_bank_id_terms

	

	
supports_objective_bank_query()

	Tests if a ObjectiveBankQuery is available for querying objective banks.

	Returns:	true if an objective bank query is available, false otherwise

	Return type:	boolean

	
objective_bank_query

	Gets the query for an objective bank.

Multiple retrievals produce a nested OR term.

	Returns:	the objective bank query

	Return type:	osid.learning.ObjectiveBankQuery

	Raise:	Unimplemented – supports_objective_bank_query() is false

	
objective_bank_terms

	

	
get_objective_query_record(objective_record_type)

	Gets the objective query record corresponding to the given Objective record Type.

Multiple retrievals produce a nested OR term.

	Parameters:	objective_record_type (osid.type.Type) – an objective query record type

	Returns:	the objective query record

	Return type:	osid.learning.records.ObjectiveQueryRecord

	Raise:	NullArgument – objective_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(objective_record_type) is false

Activity Query

	
class dlkit.learning.queries.ActivityQuery

	Bases: dlkit.osid.queries.OsidObjectQuery, dlkit.osid.queries.OsidSubjugateableQuery

This is the query for searching activities.

Each method match request produces an AND term while multiple
invocations of a method produces a nested OR.

	
match_objective_id(objective_id, match)

	Sets the objective Id for this query.

	Parameters:	
	objective_id (osid.id.Id) – an objective Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – objective_id is null

	
objective_id_terms

	

	
supports_objective_query()

	Tests if an ObjectiveQuery is available for querying objectives.

	Returns:	true if an objective query is available, false otherwise

	Return type:	boolean

	
objective_query

	Gets the query for an objective.

Multiple retrievals produce a nested OR term.

	Returns:	the objective query

	Return type:	osid.learning.ObjectiveQuery

	Raise:	Unimplemented – supports_objective_query() is false

	
objective_terms

	

	
match_asset_id(asset_id, match)

	Sets the asset Id for this query.

	Parameters:	
	asset_id (osid.id.Id) – an asset Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – asset_id is null

	
asset_id_terms

	

	
supports_asset_query()

	Tests if an AssetQuery is available for querying objectives.

	Returns:	true if an robjective query is available, false otherwise

	Return type:	boolean

	
asset_query

	Gets the query for an asset.

Multiple retrievals produce a nested OR term.

	Returns:	the asset query

	Return type:	osid.repository.AssetQuery

	Raise:	Unimplemented – supports_asset_query() is false

	
match_any_asset(match)

	Matches an activity that has any objective assigned.

	Parameters:	match (boolean) – true to match activities with any asset, false to match activities with no asset

	
asset_terms

	

	
match_course_id(course_id, match)

	Sets the course Id for this query.

	Parameters:	
	course_id (osid.id.Id) – a course Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – course_id is null

	
course_id_terms

	

	
supports_course_query()

	Tests if a CourseQuery is available for querying courses.

	Returns:	true if a course query is available, false otherwise

	Return type:	boolean

	
course_query

	Gets the query for a course.

Multiple retrievals produce a nested OR term.

	Returns:	the course query

	Return type:	osid.course.CourseQuery

	Raise:	Unimplemented – supports_course_query() is false

	
match_any_course(match)

	Matches an activity that has any course assigned.

	Parameters:	match (boolean) – true to match activities with any courses, false to match activities with no courses

	
course_terms

	

	
match_assessment_id(assessment_id, match)

	Sets the assessment Id for this query.

	Parameters:	
	assessment_id (osid.id.Id) – an assessment Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – assessment_id is null

	
assessment_id_terms

	

	
supports_assessment_query()

	Tests if an AssessmentQuery is available for querying assessments.

	Returns:	true if an assessment query is available, false otherwise

	Return type:	boolean

	
assessment_query

	Gets the query for a assessment.

Multiple retrievals produce a nested OR term.

	Returns:	the assessment query

	Return type:	osid.assessment.AssessmentQuery

	Raise:	Unimplemented – supports_assessment_query() is false

	
match_any_assessment(match)

	Matches an activity that has any assessment assigned.

	Parameters:	match (boolean) – true to match activities with any assessments, false to match activities with no assessments

	
assessment_terms

	

	
match_objective_bank_id(objective_bank_id, match)

	Sets the objective bank Id for this query.

	Parameters:	
	objective_bank_id (osid.id.Id) – an objective bank Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – objective_bank_id is null

	
objective_bank_id_terms

	

	
supports_objective_bank_query()

	Tests if a ObjectiveBankQuery is available for querying resources.

	Returns:	true if an objective bank query is available, false otherwise

	Return type:	boolean

	
objective_bank_query

	Gets the query for an objective bank.

Multiple retrievals produce a nested OR term.

	Returns:	the objective bank query

	Return type:	osid.learning.ObjectiveBankQuery

	Raise:	Unimplemented – supports_objective_bank_query() is false

	
objective_bank_terms

	

	
get_activity_query_record(activity_record_type)

	Gets the activity query record corresponding to the given Activity record Type.

Multiple retrievals produce a nested OR term.

	Parameters:	activity_record_type (osid.type.Type) – an activity query record type

	Returns:	the activity query record

	Return type:	osid.learning.records.ActivityQueryRecord

	Raise:	NullArgument – activity_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(activity_record_type) is false

Objective Bank Query

	
class dlkit.learning.queries.ObjectiveBankQuery

	Bases: dlkit.osid.queries.OsidCatalogQuery

This is the query for searching objective banks.

Each method specifies an AND term while multiple invocations of
the same method produce a nested OR.

	
match_objective_id(objective_id, match)

	Sets the objective Id for this query.

	Parameters:	
	objective_id (osid.id.Id) – an objective Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – objective_id is null

	
objective_id_terms

	

	
supports_objective_query()

	Tests if an ObjectiveQuery is available.

	Returns:	true if an objective query is available, false otherwise

	Return type:	boolean

	
objective_query

	Gets the query for an objective.

Multiple retrievals produce a nested OR term.

	Returns:	the objective query

	Return type:	osid.learning.ObjectiveQuery

	Raise:	Unimplemented – supports_objective_query() is false

	
match_any_objective(match)

	Matches an objective bank that has any objective assigned.

	Parameters:	match (boolean) – true to match objective banks with any objective, false to match objective banks with no objectives

	
objective_terms

	

	
match_activity_id(activity_id, match)

	Sets the activity Id for this query.

	Parameters:	
	activity_id (osid.id.Id) – an activity Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – activity_id is null

	
activity_id_terms

	

	
supports_activity_query()

	Tests if a ActivityQuery is available for querying activities.

	Returns:	true if an activity query is available, false otherwise

	Return type:	boolean

	
activity_query

	Gets the query for an activity.

Multiple retrievals produce a nested OR term.

	Returns:	the activity query

	Return type:	osid.learning.ActivityQuery

	Raise:	Unimplemented – supports_activity_query() is false

	
match_any_activity(match)

	Matches an objective bank that has any activity assigned.

	Parameters:	match (boolean) – true to match objective banks with any activity, false to match objective banks with no activities

	
activity_terms

	

	
match_ancestor_objective_bank_id(objective_bank_id, match)

	Sets the objective bank Id for this query to match objective banks that have the specified objective bank as an ancestor.

	Parameters:	
	objective_bank_id (osid.id.Id) – an objective bank Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – objective_bank_id is null

	
ancestor_objective_bank_id_terms

	

	
supports_ancestor_objective_bank_query()

	Tests if a ObjectiveBankQuery is available for querying ancestor objective banks.

	Returns:	true if an objective bank query is available, false otherwise

	Return type:	boolean

	
ancestor_objective_bank_query

	Gets the query for an objective bank.

Multiple retrievals produce a nested OR term.

	Returns:	the objective bank query

	Return type:	osid.learning.ObjectiveBankQuery

	Raise:	Unimplemented – supports_ancestor_objective_bank_query() is false

	
match_any_ancestor_objective_bank(match)

	Matches an objective bank that has any ancestor.

	Parameters:	match (boolean) – true to match objective banks with any ancestor, false to match root objective banks

	
ancestor_objective_bank_terms

	

	
match_descendant_objective_bank_id(objective_bank_id, match)

	Sets the objective bank Id for this query to match objective banks that have the specified objective bank as a descendant.

	Parameters:	
	objective_bank_id (osid.id.Id) – an objective bank Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – objective_bank_id is null

	
descendant_objective_bank_id_terms

	

	
supports_descendant_objective_bank_query()

	Tests if a ObjectiveBankQuery is available for querying descendant objective banks.

	Returns:	true if an objective bank query is available, false otherwise

	Return type:	boolean

	
descendant_objective_bank_query

	Gets the query for an objective bank.

Multiple retrievals produce a nested OR term.

	Returns:	the objective bank query

	Return type:	osid.learning.ObjectiveBankQuery

	Raise:	Unimplemented – supports_descendant_objective_bank_query() is false

	
match_any_descendant_objective_bank(match)

	Matches an objective bank that has any descendant.

	Parameters:	match (boolean) – true to match objective banks with any descendant, false to match leaf objective banks

	
descendant_objective_bank_terms

	

	
get_objective_bank_query_record(objective_bank_record_type)

	Gets the objective bank query record corresponding to the given ObjectiveBank record Type.

Multiple record retrievals produce a nested OR term.

	Parameters:	objective_bank_record_type (osid.type.Type) – an objective bank record type

	Returns:	the objective bank query record

	Return type:	osid.learning.records.ObjectiveBankQueryRecord

	Raise:	NullArgument – objective_bank_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(objective_bank_record_type) is false

Records

Objective Record

	
class dlkit.learning.records.ObjectiveRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an Objective.

The methods specified by the record type are available through the
underlying object.

Objective Query Record

	
class dlkit.learning.records.ObjectiveQueryRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an ObjectiveQuery.

The methods specified by the record type are available through the
underlying object.

Objective Form Record

	
class dlkit.learning.records.ObjectiveFormRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an ObjectiveForm.

The methods specified by the record type are available through the
underlying object.

Activity Record

	
class dlkit.learning.records.ActivityRecord

	Bases: dlkit.osid.records.OsidRecord

A record for a Activity.

The methods specified by the record type are available through the
underlying object.

Activity Query Record

	
class dlkit.learning.records.ActivityQueryRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an ActivityQuery.

The methods specified by the record type are available through the
underlying object.

Activity Form Record

	
class dlkit.learning.records.ActivityFormRecord

	Bases: dlkit.osid.records.OsidRecord

A record for a ActivityForm.

The methods specified by the record type are available through the
underlying object.

Objective Bank Record

	
class dlkit.learning.records.ObjectiveBankRecord

	Bases: dlkit.osid.records.OsidRecord

A record for a ObjectiveBank.

The methods specified by the record type are available through the
underlying object.

Objective Bank Query Record

	
class dlkit.learning.records.ObjectiveBankQueryRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an ObjectiveBankQuery.

The methods specified by the record type are available through the
underlying object.

Objective Bank Form Record

	
class dlkit.learning.records.ObjectiveBankFormRecord

	Bases: dlkit.osid.records.OsidRecord

A record for a ObjectiveBankForm.

The methods specified by the record type are available through the
underlying object.

Repository

	Summary

	Service Managers
	Repository Manager

	Repository Profile Methods

	Repository Lookup Methods

	Repository Admin Methods

	Repository
	Repository

	Asset Lookup Methods

	Asset Query Methods

	Asset Admin Methods

	Objects
	Asset

	Asset Form

	Asset List

	Asset Content

	Asset Content Form

	Asset Content List

	Repository Form

	Repository List

	Queries
	Asset Query

	Asset Content Query

	Repository Query

	Records
	Asset Record

	Asset Query Record

	Asset Form Record

	Asset Content Record

	Asset Content Query Record

	Asset Content Form Record

	Repository Record

	Repository Query Record

	Repository Form Record

Summary

Repository Open Service Interface Definitions
repository version 3.0.0

The Repository OSID provides the service of finding and managing digital
assets.

Assets

An Asset represents a unit of content, whether it be an image, a
video, an application document or some text. The Asset defines a core
set of definitions applicable to digital content, such as copyright and
publisher, and allows for a type specification to be appended as with
other OsidObjects.

Asset content, such as a document, is defined such that there may be
multiple formats contained with the same asset. A document may be
accessible in both PDF and MS Word, but is the same document, for
example. An image may have both a large size and a thumbnail version.
Generally, an asset contains more than one version of content when it is
left to the application to decide which is most appropriate.

The Asset Type may define methods in common throughout the
content variations. An example asset is one whose content Types are
“Quicktime” and “MPEG”, but the Asset Type is “movie” and
defines methods that describe the move aside from the formats. This
“double” Type hierarchy stemming from the asset requires more care in
defining interfaces.

Assets also have “credits” which define the authors, editors,
creators, performers, producers or any other “role”, identified with a
role Type, with the production of the asset. These are managed
externally to the asset through another OsidSession.

Through additional optional OsidSessions, the Asset can be
“extended” to offer temporal information. An asset may pertain to a
date, a period of time, or a series of dates and periods. This mechanism
is to offer the ability to search for assets pertaining to a desired
date range without requiring understanding of a Type.

Similarly, the Asset can also map to spatial information. A
photograph may be “geotagged” with the GPS coordinates where it was
taken, a conical shape in stellar coordinates could be described for an
astronimocal image, or there may be a desire to may a historical book to
the spatial coordinates of Boston and Philadelphia. Unlike temporal
mappings, the definition of the spatial coordinate is left to a spatial
Type to define. The Repository OSID simply manages spatial mappings to
the Asset.

Asset Tagging

Assets may also relate to Ontology OSID Subjects. The
Subject provides the ability to normalize information related to
subject matter across the Assets to simplify management and provide
a more robust searching mechanism. For example, with a photograph of the
Empire State Building, one may wish to describe that it was designed by
Shreve, Lamb and Harmon and completed in 1931. The information about the
building itself can be described using a Subject and related to the
photograph, and any other photograph that captures the building. The
Asset Type for the photograph may simply be “photograph” and
doesn’t attempt to describe a building, while the AssetContent
Type is “image/jpeg”.

An application performing a search for Empire State Building can be
execute the search over the Subjects, and once the user has narrowed
the subject area, then the related Assets can be retrieved, and from
there negotiate the content.

A provider wishing to construct a simple inventory database of buildings
in New York may decide to do so using the Resource OSID. The
Resource Type may describe the construction dates, height,
location, style and architects of buildings. The Type may also
include a means of getting a reference image using the Asset
interface. Since there is no explicit relationship between Subject
and Resource, the Resource can be adapted to the Subject
interface (mapping a building_resource_type to a
building_subject_type) to use the same data for Subject to
Asset mappings and searching.

Asset Compositions

Asset compositions can be created using the Composition interface. A
Composition is a group of Assets and compositions may be
structured into a hierarchy for the purpose of “building” larger
content. A content management system may make use of this interface to
construct a web page. The Composition hierarchy may map into an
XHTML structure and each Asset represent an image or a link in the
document. However, the produced web page at a given URL may be
represented by another single Asset that whose content has both the
URL and the XHTML stream.

Another example is an IMS Common Cartridge. The Composition may be
used to produce the zip file cartridge, but consumers may access the zip
file via an Asset .

Repository Cataloging

Finally, Assets and Compositions may be categorized into
Repository objects. A Repository is a catalog-like interface to
help organize assets and subject matter. Repositories may be organized
into hierarchies for organization or federation purposes.

This number of service aspects to this Repository OSID produce a large
number of definitions. It is recommended to use the
RepositoryManager definition to select a single OsidSession of
interest, and work that definition through its dependencies before
tackling another aspect.

Sub Packages

The Repository OSID includes a rules subpackage for managing dynamic
compositions.

 Repository Open Service Interface Definitions
repository version 3.0.0

The Repository OSID provides the service of finding and managing digital
assets.

Assets

An Asset represents a unit of content, whether it be an image, a
video, an application document or some text. The Asset defines a core
set of definitions applicable to digital content, such as copyright and
publisher, and allows for a type specification to be appended as with
other OsidObjects.

Asset content, such as a document, is defined such that there may be
multiple formats contained with the same asset. A document may be
accessible in both PDF and MS Word, but is the same document, for
example. An image may have both a large size and a thumbnail version.
Generally, an asset contains more than one version of content when it is
left to the application to decide which is most appropriate.

The Asset Type may define methods in common throughout the
content variations. An example asset is one whose content Types are
“Quicktime” and “MPEG”, but the Asset Type is “movie” and
defines methods that describe the move aside from the formats. This
“double” Type hierarchy stemming from the asset requires more care in
defining interfaces.

Assets also have “credits” which define the authors, editors,
creators, performers, producers or any other “role”, identified with a
role Type, with the production of the asset. These are managed
externally to the asset through another OsidSession.

Through additional optional OsidSessions, the Asset can be
“extended” to offer temporal information. An asset may pertain to a
date, a period of time, or a series of dates and periods. This mechanism
is to offer the ability to search for assets pertaining to a desired
date range without requiring understanding of a Type.

Similarly, the Asset can also map to spatial information. A
photograph may be “geotagged” with the GPS coordinates where it was
taken, a conical shape in stellar coordinates could be described for an
astronimocal image, or there may be a desire to may a historical book to
the spatial coordinates of Boston and Philadelphia. Unlike temporal
mappings, the definition of the spatial coordinate is left to a spatial
Type to define. The Repository OSID simply manages spatial mappings to
the Asset.

Asset Tagging

Assets may also relate to Ontology OSID Subjects. The
Subject provides the ability to normalize information related to
subject matter across the Assets to simplify management and provide
a more robust searching mechanism. For example, with a photograph of the
Empire State Building, one may wish to describe that it was designed by
Shreve, Lamb and Harmon and completed in 1931. The information about the
building itself can be described using a Subject and related to the
photograph, and any other photograph that captures the building. The
Asset Type for the photograph may simply be “photograph” and
doesn’t attempt to describe a building, while the AssetContent
Type is “image/jpeg”.

An application performing a search for Empire State Building can be
execute the search over the Subjects, and once the user has narrowed
the subject area, then the related Assets can be retrieved, and from
there negotiate the content.

A provider wishing to construct a simple inventory database of buildings
in New York may decide to do so using the Resource OSID. The
Resource Type may describe the construction dates, height,
location, style and architects of buildings. The Type may also
include a means of getting a reference image using the Asset
interface. Since there is no explicit relationship between Subject
and Resource, the Resource can be adapted to the Subject
interface (mapping a building_resource_type to a
building_subject_type) to use the same data for Subject to
Asset mappings and searching.

Asset Compositions

Asset compositions can be created using the Composition interface. A
Composition is a group of Assets and compositions may be
structured into a hierarchy for the purpose of “building” larger
content. A content management system may make use of this interface to
construct a web page. The Composition hierarchy may map into an
XHTML structure and each Asset represent an image or a link in the
document. However, the produced web page at a given URL may be
represented by another single Asset that whose content has both the
URL and the XHTML stream.

Another example is an IMS Common Cartridge. The Composition may be
used to produce the zip file cartridge, but consumers may access the zip
file via an Asset .

Repository Cataloging

Finally, Assets and Compositions may be categorized into
Repository objects. A Repository is a catalog-like interface to
help organize assets and subject matter. Repositories may be organized
into hierarchies for organization or federation purposes.

This number of service aspects to this Repository OSID produce a large
number of definitions. It is recommended to use the
RepositoryManager definition to select a single OsidSession of
interest, and work that definition through its dependencies before
tackling another aspect.

Sub Packages

The Repository OSID includes a rules subpackage for managing dynamic
compositions.

Service Managers

Repository Manager

	
class dlkit.services.repository.RepositoryManager

	Bases: dlkit.osid.managers.OsidManager, dlkit.osid.sessions.OsidSession, dlkit.services.repository.RepositoryProfile

	
repository_batch_manager

	Gets a RepositoryBatchManager.

	Returns:	a RepostoryBatchManager

	Return type:	osid.repository.batch.RepositoryBatchManager

	Raise:	OperationFailed – unable to complete request

	Raise:	Unimplemented – supports_repository_batch() is false

	
repository_rules_manager

	Gets a RepositoryRulesManager.

	Returns:	a RepostoryRulesManager

	Return type:	osid.repository.rules.RepositoryRulesManager

	Raise:	OperationFailed – unable to complete request

	Raise:	Unimplemented – supports_repository_rules() is false

Repository Profile Methods

	
RepositoryManager.supports_asset_lookup()

	Tests if asset lookup is supported.

	Returns:	true if asset lookup is supported , false otherwise

	Return type:	boolean

	
RepositoryManager.supports_asset_query()

	Tests if asset query is supported.

	Returns:	true if asset query is supported , false otherwise

	Return type:	boolean

	
RepositoryManager.supports_asset_admin()

	Tests if asset administration is supported.

	Returns:	true if asset administration is supported, false otherwise

	Return type:	boolean

	
RepositoryManager.supports_repository_lookup()

	Tests if repository lookup is supported.

	Returns:	true if repository lookup is supported , false otherwise

	Return type:	boolean

	
RepositoryManager.supports_repository_admin()

	Tests if repository administration is supported.

	Returns:	true if repository administration is supported, false otherwise

	Return type:	boolean

	
RepositoryManager.asset_record_types

	Gets all the asset record types supported.

	Returns:	the list of supported asset record types

	Return type:	osid.type.TypeList

	
RepositoryManager.asset_search_record_types

	Gets all the asset search record types supported.

	Returns:	the list of supported asset search record types

	Return type:	osid.type.TypeList

	
RepositoryManager.asset_content_record_types

	Gets all the asset content record types supported.

	Returns:	the list of supported asset content record types

	Return type:	osid.type.TypeList

	
RepositoryManager.composition_record_types

	Gets all the composition record types supported.

	Returns:	the list of supported composition record types

	Return type:	osid.type.TypeList

	
RepositoryManager.composition_search_record_types

	Gets all the composition search record types supported.

	Returns:	the list of supported composition search record types

	Return type:	osid.type.TypeList

	
RepositoryManager.repository_record_types

	Gets all the repository record types supported.

	Returns:	the list of supported repository record types

	Return type:	osid.type.TypeList

	
RepositoryManager.repository_search_record_types

	Gets all the repository search record types supported.

	Returns:	the list of supported repository search record types

	Return type:	osid.type.TypeList

	
RepositoryManager.spatial_unit_record_types

	Gets all the spatial unit record types supported.

	Returns:	the list of supported spatial unit record types

	Return type:	osid.type.TypeList

	
RepositoryManager.coordinate_types

	Gets all the coordinate types supported.

	Returns:	the list of supported coordinate types

	Return type:	osid.type.TypeList

Repository Lookup Methods

	
RepositoryManager.can_lookup_repositories()

	Tests if this user can perform Repository lookups.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an application that may opt not to offer lookup
operations to unauthorized users.

	Returns:	false if lookup methods are not authorized, true otherwise

	Return type:	boolean

	
RepositoryManager.use_comparative_repository_view()

	The returns from the lookup methods may omit or translate elements based on this session, such as authorization, and not result in an error.
This view is used when greater interoperability is desired at
the expense of precision.

	
RepositoryManager.use_plenary_repository_view()

	A complete view of the Repository returns is desired.
Methods will return what is requested or result in an error.
This view is used when greater precision is desired at the
expense of interoperability.

	
RepositoryManager.get_repositories_by_ids(repository_ids)

	Gets a RepositoryList corresponding to the given IdList.
In plenary mode, the returned list contains all of the
repositories specified in the Id list, in the order of the
list, including duplicates, or an error results if an Id in
the supplied list is not found or inaccessible. Otherwise,
inaccessible Repositories may be omitted from the list and
may present the elements in any order including returning a
unique set.

	Parameters:	repository_ids (osid.id.IdList) – the list of Ids to retrieve

	Returns:	the returned Repository list

	Return type:	osid.repository.RepositoryList

	Raise:	NotFound – an Id was not found

	Raise:	NullArgument – repository_ids is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
RepositoryManager.get_repositories_by_genus_type(repository_genus_type)

	Gets a RepositoryList corresponding to the given repository genus Type which does not include repositories of types derived from the specified Type.
In plenary mode, the returned list contains all known
repositories or an error results. Otherwise, the returned list
may contain only those repositories that are accessible through
this session.

	Parameters:	repository_genus_type (osid.type.Type) – a repository genus type

	Returns:	the returned Repository list

	Return type:	osid.repository.RepositoryList

	Raise:	NullArgument – repository_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
RepositoryManager.get_repositories_by_parent_genus_type(repository_genus_type)

	Gets a RepositoryList corresponding to the given repository genus Type and include any additional repositories with genus types derived from the specified Type.
In plenary mode, the returned list contains all known
repositories or an error results. Otherwise, the returned list
may contain only those repositories that are accessible through
this session.

	Parameters:	repository_genus_type (osid.type.Type) – a repository genus type

	Returns:	the returned Repository list

	Return type:	osid.repository.RepositoryList

	Raise:	NullArgument – repository_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
RepositoryManager.get_repositories_by_record_type(repository_record_type)

	Gets a RepositoryList containing the given repository record Type.
In plenary mode, the returned list contains all known
repositories or an error results. Otherwise, the returned list
may contain only those repositories that are accessible through
this session.

	Parameters:	repository_record_type (osid.type.Type) – a repository record type

	Returns:	the returned Repository list

	Return type:	osid.repository.RepositoryList

	Raise:	NullArgument – repository_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
RepositoryManager.get_repositories_by_provider(resource_id)

	Gets a RepositoryList from the given provider ````.
In plenary mode, the returned list contains all known
repositories or an error results. Otherwise, the returned list
may contain only those repositories that are accessible through
this session.

	Parameters:	resource_id (osid.id.Id) – a resource Id

	Returns:	the returned Repository list

	Return type:	osid.repository.RepositoryList

	Raise:	NullArgument – resource_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
RepositoryManager.repositories

	Gets all Repositories.
In plenary mode, the returned list contains all known
repositories or an error results. Otherwise, the returned list
may contain only those repositories that are accessible through
this session.

	Returns:	a list of Repositories

	Return type:	osid.repository.RepositoryList

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Repository Admin Methods

	
RepositoryManager.can_create_repositories()

	Tests if this user can create Repositories.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known creating a
Repository will result in a PermissionDenied. This is
intended as a hint to an application that may not wish to offer
create operations to unauthorized users.

	Returns:	false if Repository creation is not authorized, true otherwise

	Return type:	boolean

	
RepositoryManager.can_create_repository_with_record_types(repository_record_types)

	Tests if this user can create a single Repository using the desired record types.
While RepositoryManager.getRepositoryRecordTypes() can be
used to examine which records are supported, this method tests
which record(s) are required for creating a specific
Repository. Providing an empty array tests if a
Repository can be created with no records.

	Parameters:	repository_record_types (osid.type.Type[]) – array of repository record types

	Returns:	true if Repository creation using the specified Types is supported, false otherwise

	Return type:	boolean

	Raise:	NullArgument – repository_record_types is null

	
RepositoryManager.get_repository_form_for_create(repository_record_types)

	Gets the repository form for creating new repositories.
A new form should be requested for each create transaction.

	Parameters:	repository_record_types (osid.type.Type[]) – array of repository record types

	Returns:	the repository form

	Return type:	osid.repository.RepositoryForm

	Raise:	NullArgument – repository_record_types is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – unable to get form for requested record types

	
RepositoryManager.create_repository(repository_form)

	Creates a new Repository.

	Parameters:	repository_form (osid.repository.RepositoryForm) – the form for this Repository

	Returns:	the new Repository

	Return type:	osid.repository.Repository

	Raise:	IllegalState – repository_form already used in a create transaction

	Raise:	InvalidArgument – one or more of the form elements is invalid

	Raise:	NullArgument – repository_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – repository_form did not originate from get_repository_form_for_create()

	
RepositoryManager.can_update_repositories()

	Tests if this user can update Repositories.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known updating a
Repository will result in a PermissionDenied. This is
intended as a hint to an application that may not wish to offer
update operations to unauthorized users.

	Returns:	false if Repository modification is not authorized, true otherwise

	Return type:	boolean

	
RepositoryManager.get_repository_form_for_update(repository_id)

	Gets the repository form for updating an existing repository.
A new repository form should be requested for each update
transaction.

	Parameters:	repository_id (osid.id.Id) – the Id of the Repository

	Returns:	the repository form

	Return type:	osid.repository.RepositoryForm

	Raise:	NotFound – repository_id is not found

	Raise:	NullArgument – repository_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
RepositoryManager.update_repository(repository_form)

	Updates an existing repository.

	Parameters:	repository_form (osid.repository.RepositoryForm) – the form containing the elements to be updated

	Raise:	IllegalState – repository_form already used in an update transaction

	Raise:	InvalidArgument – the form contains an invalid value

	Raise:	NullArgument – repository_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – repository_form did not originate from get_repository_form_for_update()

	
RepositoryManager.can_delete_repositories()

	Tests if this user can delete Repositories.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known deleting a
Repository will result in a PermissionDenied. This is
intended as a hint to an application that may not wish to offer
delete operations to unauthorized users.

	Returns:	false if Repository deletion is not authorized, true otherwise

	Return type:	boolean

	
RepositoryManager.delete_repository(repository_id)

	Deletes a Repository.

	Parameters:	repository_id (osid.id.Id) – the Id of the Repository to remove

	Raise:	NotFound – repository_id not found

	Raise:	NullArgument – repository_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
RepositoryManager.can_manage_repository_aliases()

	Tests if this user can manage Id aliases for repositories.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known changing an alias
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer alias
operations to an unauthorized user.

	Returns:	false if Repository aliasing is not authorized, true otherwise

	Return type:	boolean

	
RepositoryManager.alias_repository(repository_id, alias_id)

	Adds an Id to a Repository for the purpose of creating compatibility.
The primary Id of the Repository is determined by the
provider. The new Id is an alias to the primary Id. If
the alias is a pointer to another repository, it is reassigned
to the given repository Id.

	Parameters:	
	repository_id (osid.id.Id) – the Id of a Repository

	alias_id (osid.id.Id) – the alias Id

	Raise:	AlreadyExists – alias_id is in use as a primary Id

	Raise:	NotFound – repository_id not found

	Raise:	NullArgument – repository_id or alias_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Repository

Repository

	
class dlkit.services.repository.Repository

	Bases: dlkit.osid.objects.OsidCatalog, dlkit.osid.sessions.OsidSession

	
get_repository_record(repository_record_type)

	Gets the record corresponding to the given Repository record Type.
This method is used to retrieve an object implementing the
requested record. The repository_record_type may be the
Type returned in get_record_types() or any of its
parents in a Type hierarchy where
has_record_type(repository_record_type) is true .

	Parameters:	repository_record_type (osid.type.Type) – a repository record type

	Returns:	the repository record

	Return type:	osid.repository.records.RepositoryRecord

	Raise:	NullArgument – repository_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(repository_record_type) is false

Asset Lookup Methods

	
Repository.can_lookup_assets()

	Tests if this user can perform Asset lookups.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an application that may opt not to offer lookup
operations.

	Returns:	false if lookup methods are not authorized, true otherwise

	Return type:	boolean

	
Repository.use_comparative_asset_view()

	The returns from the lookup methods may omit or translate elements based on this session, such as authorization, and not result in an error.
This view is used when greater interoperability is desired at
the expense of precision.

	
Repository.use_plenary_asset_view()

	A complete view of the Asset returns is desired.
Methods will return what is requested or result in an error.
This view is used when greater precision is desired at the
expense of interoperability.

	
Repository.use_federated_repository_view()

	Federates the view for methods in this session.
A federated view will include assets in repositories which are
children of this repository in the repository hierarchy.

	
Repository.use_isolated_repository_view()

	Isolates the view for methods in this session.
An isolated view restricts lookups to this repository only.

	
Repository.get_asset(asset_id)

	Gets the Asset specified by its Id.
In plenary mode, the exact Id is found or a NotFound
results. Otherwise, the returned Asset may have a different
Id than requested, such as the case where a duplicate Id
was assigned to an Asset and retained for compatibility.

	Parameters:	asset_id (osid.id.Id) – the Id of the Asset to retrieve

	Returns:	the returned Asset

	Return type:	osid.repository.Asset

	Raise:	NotFound – no Asset found with the given Id

	Raise:	NullArgument – asset_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Repository.get_assets_by_ids(asset_ids)

	Gets an AssetList corresponding to the given IdList.
In plenary mode, the returned list contains all of the assets
specified in the Id list, in the order of the list,
including duplicates, or an error results if an Id in the
supplied list is not found or inaccessible. Otherwise,
inaccessible Assets may be omitted from the list and may
present the elements in any order including returning a unique
set.

	Parameters:	asset_ids (osid.id.IdList) – the list of Ids to retrieve

	Returns:	the returned Asset list

	Return type:	osid.repository.AssetList

	Raise:	NotFound – an Id was not found

	Raise:	NullArgument – asset_ids is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Repository.get_assets_by_genus_type(asset_genus_type)

	Gets an AssetList corresponding to the given asset genus Type which does not include assets of types derived from the specified Type.
In plenary mode, the returned list contains all known assets or
an error results. Otherwise, the returned list may contain only
those assets that are accessible through this session.

	Parameters:	asset_genus_type (osid.type.Type) – an asset genus type

	Returns:	the returned Asset list

	Return type:	osid.repository.AssetList

	Raise:	NullArgument – asset_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Repository.get_assets_by_parent_genus_type(asset_genus_type)

	Gets an AssetList corresponding to the given asset genus Type and include any additional assets with genus types derived from the specified Type.
In plenary mode, the returned list contains all known assets or
an error results. Otherwise, the returned list may contain only
those assets that are accessible through this session.

	Parameters:	asset_genus_type (osid.type.Type) – an asset genus type

	Returns:	the returned Asset list

	Return type:	osid.repository.AssetList

	Raise:	NullArgument – asset_genus_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Repository.get_assets_by_record_type(asset_record_type)

	Gets an AssetList containing the given asset record Type.
In plenary mode, the returned list contains all known assets or
an error results. Otherwise, the returned list may contain only
those assets that are accessible through this session.

	Parameters:	asset_record_type (osid.type.Type) – an asset record type

	Returns:	the returned Asset list

	Return type:	osid.repository.AssetList

	Raise:	NullArgument – asset_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Repository.get_assets_by_provider(resource_id)

	Gets an AssetList from the given provider.
In plenary mode, the returned list contains all known assets or
an error results. Otherwise, the returned list may contain only
those assets that are accessible through this session.

	Parameters:	resource_id (osid.id.Id) – a resource Id

	Returns:	the returned Asset list

	Return type:	osid.repository.AssetList

	Raise:	NullArgument – resource_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Repository.assets

	Gets all Assets.
In plenary mode, the returned list contains all known assets or
an error results. Otherwise, the returned list may contain only
those assets that are accessible through this session.

	Returns:	a list of Assets

	Return type:	osid.repository.AssetList

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Asset Query Methods

	
Repository.can_search_assets()

	Tests if this user can perform Asset searches.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known all methods in this
session will result in a PermissionDenied. This is intended
as a hint to an application that may opt not to offer search
operations to unauthorized users.

	Returns:	false if search methods are not authorized, true otherwise

	Return type:	boolean

	
Repository.use_federated_repository_view()

	Federates the view for methods in this session.
A federated view will include assets in repositories which are
children of this repository in the repository hierarchy.

	
Repository.use_isolated_repository_view()

	Isolates the view for methods in this session.
An isolated view restricts lookups to this repository only.

	
Repository.asset_query

	Gets an asset query.

	Returns:	the asset query

	Return type:	osid.repository.AssetQuery

	
Repository.get_assets_by_query(asset_query)

	Gets a list of Assets matching the given asset query.

	Parameters:	asset_query (osid.repository.AssetQuery) – the asset query

	Returns:	the returned AssetList

	Return type:	osid.repository.AssetList

	Raise:	NullArgument – asset_query is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – the asset_query is not of this service

Asset Admin Methods

	
Repository.can_create_assets()

	Tests if this user can create Assets.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known creating an Asset
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer create
operations to an unauthorized user.

	Returns:	false if Asset creation is not authorized, true otherwise

	Return type:	boolean

	
Repository.can_create_asset_with_record_types(asset_record_types)

	Tests if this user can create a single Asset using the desired record types.
While RepositoryManager.getAssetRecordTypes() can be used to
examine which records are supported, this method tests which
record(s) are required for creating a specific Asset.
Providing an empty array tests if an Asset can be created
with no records.

	Parameters:	asset_record_types (osid.type.Type[]) – array of asset record types

	Returns:	true if Asset creation using the specified record Types is supported, false otherwise

	Return type:	boolean

	Raise:	NullArgument – asset_record_types is null

	
Repository.get_asset_form_for_create(asset_record_types)

	Gets the asset form for creating new assets.
A new form should be requested for each create transaction.

	Parameters:	asset_record_types (osid.type.Type[]) – array of asset record types

	Returns:	the asset form

	Return type:	osid.repository.AssetForm

	Raise:	NullArgument – asset_record_types is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – unable to get form for requested record types

	
Repository.create_asset(asset_form)

	Creates a new Asset.

	Parameters:	asset_form (osid.repository.AssetForm) – the form for this Asset

	Returns:	the new Asset

	Return type:	osid.repository.Asset

	Raise:	IllegalState – asset_form already used in a create transaction

	Raise:	InvalidArgument – one or more of the form elements is invalid

	Raise:	NullArgument – asset_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – asset_form did not originate from get_asset_form_for_create()

	
Repository.can_update_assets()

	Tests if this user can update Assets.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known updating an Asset
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer update
operations to an unauthorized user.

	Returns:	false if Asset modification is not authorized, true otherwise

	Return type:	boolean

	
Repository.get_asset_form_for_update(asset_id)

	Gets the asset form for updating an existing asset.
A new asset form should be requested for each update
transaction.

	Parameters:	asset_id (osid.id.Id) – the Id of the Asset

	Returns:	the asset form

	Return type:	osid.repository.AssetForm

	Raise:	NotFound – asset_id is not found

	Raise:	NullArgument – asset_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Repository.update_asset(asset_form)

	Updates an existing asset.

	Parameters:	asset_form (osid.repository.AssetForm) – the form containing the elements to be updated

	Raise:	IllegalState – asset_form already used in anupdate transaction

	Raise:	InvalidArgument – the form contains an invalid value

	Raise:	NullArgument – asset_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – asset_form did not originate from get_asset_form_for_update()

	
Repository.can_delete_assets()

	Tests if this user can delete Assets.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known deleting an Asset
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer delete
operations to an unauthorized user.

	Returns:	false if Asset deletion is not authorized, true otherwise

	Return type:	boolean

	
Repository.delete_asset(asset_id)

	Deletes an Asset.

	Parameters:	asset_id (osid.id.Id) – the Id of the Asset to remove

	Raise:	NotFound – asset_id not found

	Raise:	NullArgument – asset_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Repository.can_manage_asset_aliases()

	Tests if this user can manage Id aliases for Assets.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known changing an alias
will result in a PermissionDenied. This is intended as a
hint to an application that may opt not to offer alias
operations to an unauthorized user.

	Returns:	false if Asset aliasing is not authorized, true otherwise

	Return type:	boolean

	
Repository.alias_asset(asset_id, alias_id)

	Adds an Id to an Asset for the purpose of creating compatibility.
The primary Id of the Asset is determined by the
provider. The new Id performs as an alias to the primary
Id. If the alias is a pointer to another asset, it is
reassigned to the given asset Id.

	Parameters:	
	asset_id (osid.id.Id) – the Id of an Asset

	alias_id (osid.id.Id) – the alias Id

	Raise:	AlreadyExists – alias_id is already assigned

	Raise:	NotFound – asset_id not found

	Raise:	NullArgument – asset_id or alias_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	
Repository.can_create_asset_content()

	Tests if this user can create content for Assets.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known creating an
AssetContent will result in a PermissionDenied. This is
intended as a hint to an application that may opt not to offer
create operations to an unauthorized user.

	Returns:	false if Asset content creation is not authorized, true otherwise

	Return type:	boolean

	
Repository.can_create_asset_content_with_record_types(asset_content_record_types)

	Tests if this user can create an AssetContent using the desired record types.
While RepositoryManager.getAssetContentRecordTypes() can be
used to test which records are supported, this method tests
which records are required for creating a specific
AssetContent. Providing an empty array tests if an
AssetContent can be created with no records.

	Parameters:	asset_content_record_types (osid.type.Type[]) – array of asset content record types

	Returns:	true if AssetContent creation using the specified Types is supported, false otherwise

	Return type:	boolean

	Raise:	NullArgument – asset_content_record_types is null

	
Repository.get_asset_content_form_for_create(asset_id, asset_content_record_types)

	Gets an asset content form for creating new assets.

	Parameters:	
	asset_id (osid.id.Id) – the Id of an Asset

	asset_content_record_types (osid.type.Type[]) – array of asset content record types

	Returns:	the asset content form

	Return type:	osid.repository.AssetContentForm

	Raise:	NotFound – asset_id is not found

	Raise:	NullArgument – asset_id or asset_content_record_types is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – unable to get form for requested record types

	
Repository.create_asset_content(asset_content_form)

	Creates new AssetContent for a given asset.

	Parameters:	asset_content_form (osid.repository.AssetContentForm) – the form for this AssetContent

	Returns:	the new AssetContent

	Return type:	osid.repository.AssetContent

	Raise:	IllegalState – asset_content_form already used in a create transaction

	Raise:	InvalidArgument – one or more of the form elements is invalid

	Raise:	NullArgument – asset_content_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – asset_content_form did not originate from get_asset_content_form_for_create()

	
Repository.can_update_asset_contents()

	Tests if this user can update AssetContent.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known updating an
AssetContent will result in a PermissionDenied. This is
intended as a hint to an application that may opt not to offer
update operations to an unauthorized user.

	Returns:	false if AssetContent modification is not authorized, true otherwise

	Return type:	boolean

	
Repository.get_asset_content_form_for_update(asset_content_id)

	Gets the asset content form for updating an existing asset content.
A new asset content form should be requested for each update
transaction.

	Parameters:	asset_content_id (osid.id.Id) – the Id of the AssetContent

	Returns:	the asset content form

	Return type:	osid.repository.AssetContentForm

	Raise:	NotFound – asset_content_id is not found

	Raise:	NullArgument – asset_content_id is null

	Raise:	OperationFailed – unable to complete request

	
Repository.update_asset_content(asset_content_form)

	Updates an existing asset content.

	Parameters:	asset_content_form (osid.repository.AssetContentForm) – the form containing the elements to be updated

	Raise:	IllegalState – asset_content_form already used in an update transaction

	Raise:	InvalidArgument – the form contains an invalid value

	Raise:	NullArgument – asset_form is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

	Raise:	Unsupported – asset_content_form did not originate from get_asset_content_form_for_update()

	
Repository.can_delete_asset_contents()

	Tests if this user can delete AssetsContents.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known deleting an
AssetContent will result in a PermissionDenied. This is
intended as a hint to an application that may opt not to offer
delete operations to an unauthorized user.

	Returns:	false if AssetContent deletion is not authorized, true otherwise

	Return type:	boolean

	
Repository.delete_asset_content(asset_content_id)

	Deletes content from an Asset.

	Parameters:	asset_content_id (osid.id.Id) – the Id of the AssetContent

	Raise:	NotFound – asset_content_id is not found

	Raise:	NullArgument – asset_content_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure

Objects

Asset

	
class dlkit.repository.objects.Asset

	Bases: dlkit.osid.objects.OsidObject, dlkit.osid.markers.Aggregateable, dlkit.osid.markers.Sourceable

An Asset represents some digital content.

Example assets might be a text document, an image, or a movie. The
content data, and metadata related directly to the content format
and quality, is accessed through AssetContent. Assets , like all
OsidObjects, include a type a record to qualify the Asset
and include additional data. The division between the Asset
Type and AssetContent is to separate data describing the
asset from data describing the format of the contents, allowing a
consumer to select among multiple formats, sizes or levels of
fidelity.

An example is a photograph of the Bay Bridge. The content may
deliver a JPEG in multiple resolutions where the AssetContent
may also desribe size or compression factor for each one. The
content may also include an uncompressed TIFF version. The Asset
Type may be “photograph” indicating that the photo itself is the
asset managed in this repository.

Since an Asset may have multiple AssetContent structures, the
decision of how many things to stuff inside a single asset comes
down to if the content is actually a different format, or size, or
quality, falling under the same creator, copyright, publisher and
distribution rights as the original. This may, in some cases,
provide a means to implement some accessibility, it doesn’t handle
the case where, to meet an accessibility requirement, one asset
needs to be substituted for another. The Repository OSID manages
this aspect outside the scope of the core Asset definition.

Assets map to AssetSubjects. AssetSubjects are
OsidObjects that capture a subject matter. In the above example,
an AssetSubject may be defined for the Bay Bridge and include
data describing the bridge. The single subject can map to multiple
assets depicting the bridge providing a single entry for a search
and a single place to describe a bridge. Bridges, as physical items,
may also be described using the Resource OSID in which case the use
of the AssetSubject acts as a cover for the underlying
Resource to assist repository-only consumers.

The Asset definition includes some basic copyright and related
licensing information to assist in finding free-to-use content, or
to convey the distribution restrictions that may be placed on the
asset. Generally, if no data is available it is to be assumed that
all rights are reserved.

A publisher is applicable if the content of this Asset has been
published. Not all Assets in this Repository may have a
published status and such a status may effect the applicability of
copyright law. To trace the source of an Asset, both a provider
and source are defined. The provider indicates where this repository
acquired the asset and the source indicates the original provider or
copyright owner. In the case of a published asset, the source is the
publisher.

Assets also define methods to facilitate searches over time and
space as it relates to the subject matter. This may at times be
redundant with the AssetSubject. In the case of the Bay Bridge
photograph, the temporal coverage may include 1936, when it opened,
and/or indicate when the photo was taken to capture a current event
of the bridge. The decision largeley depends on what desired effect
is from a search. The spatial coverage may describe the gps
coordinates of the bridge or describe the spatial area encompassed
in the view. In either case, a “photograph” type may unambiguously
defined methods to describe the exact time the photograph was taken
and the location of the photographer.

The core Asset defines methods to perform general searches and
construct bibliographic entries without knowledge of a particular
Asset or AssetContent record Type.

	
title

	Gets the proper title of this asset.

This may be the same as the display name or the display name may
be used for a less formal label.

	Returns:	the title of this asset

	Return type:	osid.locale.DisplayText

	
is_copyright_status_known()

	Tests if the copyright status is known.

	return:	true if the copyright status of this asset is known, false otherwise. If false, is_public_domain(), ``can_distribute_verbatim(), can_distribute_alterations() and

	can_distribute_compositions()`` may also be false.

	

	rtype:	boolean

	
is_public_domain()

	Tests if this asset is in the public domain.

An asset is in the public domain if copyright is not applicable,
the copyright has expired, or the copyright owner has expressly
relinquished the copyright.

	Returns:	true if this asset is in the public domain, false otherwise. If true, can_distribute_verbatim(), can_distribute_alterations() and can_distribute_compositions() must also be true.

	Return type:	boolean

	Raise:	IllegalState – is_copyright_status_known() is false

	
copyright_registration

	Gets the copyright registration information for this asset.

	Returns:	the copyright registration. An empty string means the registration status isn’t known.

	Return type:	string

	Raise:	IllegalState – is_copyright_status_known() is false

	
can_distribute_verbatim()

	Tests if there are any license restrictions on this asset that restrict the distribution, re-publication or public display of this asset, commercial or otherwise, without modification, alteration, or inclusion in other works.

This method is intended to offer consumers a means of filtering
out search results that restrict distribution for any purpose.
The scope of this method does not include licensing that
describes warranty disclaimers or attribution requirements. This
method is intended for informational purposes only and does not
replace or override the terms specified in a license agreement
which may specify exceptions or additional restrictions.

	Returns:	true if the asset can be distributed verbatim, false otherwise.

	Return type:	boolean

	Raise:	IllegalState – is_copyright_status_known() is false

	
can_distribute_alterations()

	Tests if there are any license restrictions on this asset that restrict the distribution, re-publication or public display of any alterations or modifications to this asset, commercial or otherwise, for any purpose.

This method is intended to offer consumers a means of filtering
out search results that restrict the distribution or public
display of any modification or alteration of the content or its
metadata of any kind, including editing, translation,
resampling, resizing and cropping. The scope of this method does
not include licensing that describes warranty disclaimers or
attribution requirements. This method is intended for
informational purposes only and does not replace or override the
terms specified in a license agreement which may specify
exceptions or additional restrictions.

	Returns:	true if the asset can be modified, false otherwise. If true, can_distribute_verbatim() must also be true.

	Return type:	boolean

	Raise:	IllegalState – is_copyright_status_known() is false

	
can_distribute_compositions()

	Tests if there are any license restrictions on this asset that restrict the distribution, re-publication or public display of this asset as an inclusion within other content or composition, commercial or otherwise, for any purpose, including restrictions upon the distribution or license of the resulting composition.

This method is intended to offer consumers a means of filtering
out search results that restrict the use of this asset within
compositions. The scope of this method does not include
licensing that describes warranty disclaimers or attribution
requirements. This method is intended for informational purposes
only and does not replace or override the terms specified in a
license agreement which may specify exceptions or additional
restrictions.

	Returns:	true if the asset can be part of a larger composition false otherwise. If true, can_distribute_verbatim() must also be true.

	Return type:	boolean

	Raise:	IllegalState – is_copyright_status_known() is false

	
source_id

	Gets the Resource Id of the source of this asset.

The source is the original owner of the copyright of this asset
and may differ from the creator of this asset. The source for a
published book written by Margaret Mitchell would be Macmillan.
The source for an unpublished painting by Arthur Goodwin would
be Arthur Goodwin.

An Asset is Sourceable and also contains a provider
identity. The provider is the entity that makes this digital
asset available in this repository but may or may not be the
publisher of the contents depicted in the asset. For example, a
map published by Ticknor and Fields in 1848 may have a provider
of Library of Congress and a source of Ticknor and Fields. If
copied from a repository at Middlebury College, the provider
would be Middlebury College and a source of Ticknor and Fields.

	Returns:	the source Id

	Return type:	osid.id.Id

	
source

	Gets the Resource of the source of this asset.

The source is the original owner of the copyright of this asset
and may differ from the creator of this asset. The source for a
published book written by Margaret Mitchell would be Macmillan.
The source for an unpublished painting by Arthur Goodwin would
be Arthur Goodwin.

	Returns:	the source

	Return type:	osid.resource.Resource

	
provider_link_ids

	Gets the resource Ids representing the source of this asset in order from the most recent provider to the originating source.

	Returns:	the provider Ids

	Return type:	osid.id.IdList

	
provider_links

	Gets the Resources representing the source of this asset in order from the most recent provider to the originating source.

	Returns:	the provider chain

	Return type:	osid.resource.ResourceList

	Raise:	OperationFailed – unable to complete request

	
created_date

	Gets the created date of this asset, which is generally not related to when the object representing the asset was created.

The date returned may indicate that not much is known.

	Returns:	the created date

	Return type:	osid.calendaring.DateTime

	
is_published()

	Tests if this asset has been published.

Not all assets viewable in this repository may have been
published. The source of a published asset indicates the
publisher.

	Returns:	true if this asset has been published, false if unpublished or its published status is not known

	Return type:	boolean

	
published_date

	Gets the published date of this asset.

Unpublished assets have no published date. A published asset has
a date available, however the date returned may indicate that
not much is known.

	Returns:	the published date

	Return type:	osid.calendaring.DateTime

	Raise:	IllegalState – is_published() is false

	
principal_credit_string

	Gets the credits of the principal people involved in the production of this asset as a display string.

	Returns:	the principal credits

	Return type:	osid.locale.DisplayText

	
asset_content_ids

	Gets the content Ids of this asset.

	Returns:	the asset content Ids

	Return type:	osid.id.IdList

	
asset_contents

	Gets the content of this asset.

	Returns:	the asset contents

	Return type:	osid.repository.AssetContentList

	Raise:	OperationFailed – unable to complete request

	
is_composition()

	Tetss if this asset is a representation of a composition of assets.

	Returns:	true if this asset is a composition, false otherwise

	Return type:	boolean

	
composition_id

	Gets the Composition Id corresponding to this asset.

	Returns:	the composiiton Id

	Return type:	osid.id.Id

	Raise:	IllegalState – is_composition() is false

	
composition

	Gets the Composition corresponding to this asset.

	Returns:	the composiiton

	Return type:	osid.repository.Composition

	Raise:	IllegalState – is_composition() is false

	Raise:	OperationFailed – unable to complete request

	
get_asset_record(asset_record_type)

	Gets the asset record corresponding to the given Asset record Type.

This method is used to retrieve an object implementing the
requested record. The asset_record_type may be the Type
returned in get_record_types() or any of its parents in a
Type hierarchy where has_record_type(asset_record_type)
is true .

	Parameters:	asset_record_type (osid.type.Type) – an asset record type

	Returns:	the asset record

	Return type:	osid.repository.records.AssetRecord

	Raise:	NullArgument – asset_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(asset_record_type) is false

Asset Form

	
class dlkit.repository.objects.AssetForm

	Bases: dlkit.osid.objects.OsidObjectForm, dlkit.osid.objects.OsidAggregateableForm, dlkit.osid.objects.OsidSourceableForm

This is the form for creating and updating Assets.

Like all OsidForm objects, various data elements may be set here
for use in the create and update methods in the
AssetAdminSession. For each data element that may be set,
metadata may be examined to provide display hints or data
constraints.

	
title_metadata

	Gets the metadata for an asset title.

	Returns:	metadata for the title

	Return type:	osid.Metadata

	
title

	Sets the title.

	Parameters:	title (string) – the new title

	Raise:	InvalidArgument – title is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – title is null

	
public_domain_metadata

	Gets the metadata for the public domain flag.

	Returns:	metadata for the public domain

	Return type:	osid.Metadata

	
public_domain

	Sets the public domain flag.

	Parameters:	public_domain (boolean) – the public domain status

	Raise:	NoAccess – Metadata.isReadOnly() is true

	
copyright_metadata

	Gets the metadata for the copyright.

	Returns:	metadata for the copyright

	Return type:	osid.Metadata

	
copyright_registration_metadata

	Gets the metadata for the copyright registration.

	Returns:	metadata for the copyright registration

	Return type:	osid.Metadata

	
copyright_registration

	Sets the copyright registration.

	Parameters:	registration (string) – the new copyright registration

	Raise:	InvalidArgument – copyright is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – copyright is null

	
distribute_verbatim_metadata

	Gets the metadata for the distribute verbatim rights flag.

	Returns:	metadata for the distribution rights fields

	Return type:	osid.Metadata

	
distribute_verbatim

	Sets the distribution rights.

	Parameters:	distribute_verbatim (boolean) – right to distribute verbatim copies

	Raise:	InvalidArgument – distribute_verbatim is invalid

	Raise:	NoAccess – authorization failure

	
distribute_alterations_metadata

	Gets the metadata for the distribute alterations rights flag.

	Returns:	metadata for the distribution rights fields

	Return type:	osid.Metadata

	
distribute_alterations

	Sets the distribute alterations flag.

This also sets distribute verbatim to true.

	Parameters:	distribute_mods (boolean) – right to distribute modifications

	Raise:	InvalidArgument – distribute_mods is invalid

	Raise:	NoAccess – authorization failure

	
distribute_compositions_metadata

	Gets the metadata for the distribute compositions rights flag.

	Returns:	metadata for the distribution rights fields

	Return type:	osid.Metadata

	
distribute_compositions

	Sets the distribution rights.

This sets distribute verbatim to true.

	Parameters:	distribute_comps (boolean) – right to distribute modifications

	Raise:	InvalidArgument – distribute_comps is invalid

	Raise:	NoAccess – authorization failure

	
source_metadata

	Gets the metadata for the source.

	Returns:	metadata for the source

	Return type:	osid.Metadata

	
source

	Sets the source.

	Parameters:	source_id (osid.id.Id) – the new publisher

	Raise:	InvalidArgument – source_id is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – source_id is null

	
provider_links_metadata

	Gets the metadata for the provider chain.

	Returns:	metadata for the provider chain

	Return type:	osid.Metadata

	
provider_links

	Sets a provider chain in order from the most recent source to the originating source.

	Parameters:	resource_ids (osid.id.Id[]) – the new source

	Raise:	InvalidArgument – resource_ids is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – resource_ids is null

	
created_date_metadata

	Gets the metadata for the asset creation date.

	Returns:	metadata for the created date

	Return type:	osid.Metadata

	
created_date

	Sets the created date.

	Parameters:	created_date (osid.calendaring.DateTime) – the new created date

	Raise:	InvalidArgument – created_date is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – created_date is null

	
published_metadata

	Gets the metadata for the published status.

	Returns:	metadata for the published field

	Return type:	osid.Metadata

	
published

	Sets the published status.

	Parameters:	published (boolean) – the published status

	Raise:	NoAccess – Metadata.isReadOnly() is true

	
published_date_metadata

	Gets the metadata for the published date.

	Returns:	metadata for the published date

	Return type:	osid.Metadata

	
published_date

	Sets the published date.

	Parameters:	published_date (osid.calendaring.DateTime) – the new published date

	Raise:	InvalidArgument – published_date is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – published_date is null

	
principal_credit_string_metadata

	Gets the metadata for the principal credit string.

	Returns:	metadata for the credit string

	Return type:	osid.Metadata

	
principal_credit_string

	Sets the principal credit string.

	Parameters:	credit_string (string) – the new credit string

	Raise:	InvalidArgument – credit_string is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – credit_string is null

	
composition_metadata

	Gets the metadata for linking this asset to a composition.

	Returns:	metadata for the composition

	Return type:	osid.Metadata

	
composition

	Sets the composition.

	Parameters:	composition_id (osid.id.Id) – a composition

	Raise:	InvalidArgument – composition_id is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – composition_id is null

	
get_asset_form_record(asset_record_type)

	Gets the AssetFormRecord corresponding to the given Asset record Type.

	Parameters:	asset_record_type (osid.type.Type) – an asset record type

	Returns:	the asset form record

	Return type:	osid.repository.records.AssetFormRecord

	Raise:	NullArgument – asset_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(asset_record_type) is false

Asset List

	
class dlkit.repository.objects.AssetList

	Bases: dlkit.osid.objects.OsidList

Like all OsidLists, AssetList provides a means for accessing Asset elements sequentially either one at a time or many at a time.

Examples: while (al.hasNext()) { Asset asset = al.getNextAsset(); }

	or

	
	while (al.hasNext()) {

	Asset[] assets = al.getNextAssets(al.available());

}

	
next_asset

	Gets the next Asset in this list.

	Returns:	the next Asset in this list. The has_next() method should be used to test that a next Asset is available before calling this method.

	Return type:	osid.repository.Asset

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

	
get_next_assets(n)

	Gets the next set of Assets in this list which must be less than or equal to the return from available().

	Parameters:	n (cardinal) – the number of Asset elements requested which must be less than or equal to available()

	Returns:	an array of Asset elements.The length of the array is less than or equal to the number specified.

	Return type:	osid.repository.Asset

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

Asset Content

	
class dlkit.repository.objects.AssetContent

	Bases: dlkit.osid.objects.OsidObject, dlkit.osid.markers.Subjugateable

AssetContent represents a version of content represented by an Asset.

Although AssetContent is a separate OsidObject with its own
Id to distuinguish it from other content inside an Asset,
AssetContent can only be accessed through an Asset.

Once an Asset is selected, multiple contents should be
negotiated using the size, fidelity, accessibility requirements or
application evnironment.

	
asset_id

	Gets the Asset Id corresponding to this content.

	Returns:	the asset Id

	Return type:	osid.id.Id

	
asset

	Gets the Asset corresponding to this content.

	Returns:	the asset

	Return type:	osid.repository.Asset

	
accessibility_types

	Gets the accessibility types associated with this content.

	Returns:	list of content accessibility types

	Return type:	osid.type.TypeList

	
has_data_length()

	Tests if a data length is available.

	Returns:	true if a length is available for this content, false otherwise.

	Return type:	boolean

	
data_length

	Gets the length of the data represented by this content in bytes.

	Returns:	the length of the data stream

	Return type:	cardinal

	Raise:	IllegalState – has_data_length() is false

	
data

	Gets the asset content data.

	Returns:	the length of the content data

	Return type:	osid.transport.DataInputStream

	Raise:	OperationFailed – unable to complete request

	
has_url()

	Tests if a URL is associated with this content.

	Returns:	true if a URL is available, false otherwise

	Return type:	boolean

	
url

	Gets the URL associated with this content for web-based retrieval.

	Returns:	the url for this data

	Return type:	string

	Raise:	IllegalState – has_url() is false

	
get_asset_content_record(asset_content_content_record_type)

	Gets the asset content record corresponding to the given AssetContent record Type.

This method is used to retrieve an object implementing the
requested record. The asset_record_type may be the Type
returned in get_record_types() or any of its parents in a
Type hierarchy where has_record_type(asset_record_type)
is true .

	Parameters:	asset_content_content_record_type (osid.type.Type) – the type of the record to retrieve

	Returns:	the asset content record

	Return type:	osid.repository.records.AssetContentRecord

	Raise:	NullArgument – asset_content_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(asset_content_record_type) is false

Asset Content Form

	
class dlkit.repository.objects.AssetContentForm

	Bases: dlkit.osid.objects.OsidObjectForm, dlkit.osid.objects.OsidSubjugateableForm

This is the form for creating and updating content for AssetContent.

Like all OsidForm objects, various data elements may be set here
for use in the create and update methods in the
AssetAdminSession. For each data element that may be set,
metadata may be examined to provide display hints or data
constraints.

	
accessibility_type_metadata

	Gets the metadata for an accessibility type.

	Returns:	metadata for the accessibility types

	Return type:	osid.Metadata

	
add_accessibility_type(accessibility_type)

	Adds an accessibility type.

Multiple types can be added.

	Parameters:	accessibility_type (osid.type.Type) – a new accessibility type

	Raise:	InvalidArgument – accessibility_type is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – accessibility_t_ype is null

	
remove_accessibility_type(accessibility_type)

	Removes an accessibility type.

	Parameters:	accessibility_type (osid.type.Type) – accessibility type to remove

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NotFound – acessibility type not found

	Raise:	NullArgument – accessibility_type is null

	
accessibility_types

	

	
data_metadata

	Gets the metadata for the content data.

	Returns:	metadata for the content data

	Return type:	osid.Metadata

	
data

	Sets the content data.

	Parameters:	data (osid.transport.DataInputStream) – the content data

	Raise:	InvalidArgument – data is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – data is null

	
url_metadata

	Gets the metadata for the url.

	Returns:	metadata for the url

	Return type:	osid.Metadata

	
url

	Sets the url.

	Parameters:	url (string) – the new copyright

	Raise:	InvalidArgument – url is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – url is null

	
get_asset_content_form_record(asset_content_record_type)

	Gets the AssetContentFormRecord corresponding to the given asset content record Type.

	Parameters:	asset_content_record_type (osid.type.Type) – an asset content record type

	Returns:	the asset content form record

	Return type:	osid.repository.records.AssetContentFormRecord

	Raise:	NullArgument – asset_content_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(asset_content_record_type) is false

Asset Content List

	
class dlkit.repository.objects.AssetContentList

	Bases: dlkit.osid.objects.OsidList

Like all OsidLists, AssetContentList provides a means for accessing AssetContent elements sequentially either one at a time or many at a time.

Examples: while (acl.hasNext()) { AssetContent content =
acl.getNextAssetContent(); }

	or

	
	while (acl.hasNext()) {

	AssetContent[] contents = acl.getNextAssetContents(acl.available());

}

	
next_asset_content

	Gets the next AssetContent in this list.

	Returns:	the next AssetContent in this list. The has_next() method should be used to test that a next AssetContent is available before calling this method.

	Return type:	osid.repository.AssetContent

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

	
get_next_asset_contents(n)

	Gets the next set of AssetContents in this list which must be less than or equal to the return from available().

	Parameters:	n (cardinal) – the number of AssetContent elements requested which must be less than or equal to available()

	Returns:	an array of AssetContent elements.The length of the array is less than or equal to the number specified.

	Return type:	osid.repository.AssetContent

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

Repository Form

	
class dlkit.repository.objects.RepositoryForm

	Bases: dlkit.osid.objects.OsidCatalogForm

This is the form for creating and updating repositories.

Like all OsidForm objects, various data elements may be set here
for use in the create and update methods in the
RepositoryAdminSession. For each data element that may be set,
metadata may be examined to provide display hints or data
constraints.

	
get_repository_form_record(repository_record_type)

	Gets the RepositoryFormRecord corresponding to the given repository record Type.

	Parameters:	repository_record_type (osid.type.Type) – a repository record type

	Returns:	the repository form record

	Return type:	osid.repository.records.RepositoryFormRecord

	Raise:	NullArgument – repository_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(repository_record_type) is false

Repository List

	
class dlkit.repository.objects.RepositoryList

	Bases: dlkit.osid.objects.OsidList

Like all OsidLists, RepositoryList provides a means for accessing Repository elements sequentially either one at a time or many at a time.

Examples: while (rl.hasNext()) { Repository repository =
rl.getNextRepository(); }

	or

	
	while (rl.hasNext()) {

	Repository[] repositories = rl.getNextRepositories(rl.available());

}

	
next_repository

	Gets the next Repository in this list.

	Returns:	the next Repository in this list. The has_next() method should be used to test that a next Repository is available before calling this method.

	Return type:	osid.repository.Repository

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

	
get_next_repositories(n)

	Gets the next set of Repository elements in this list which must be less than or equal to the return from available().

	Parameters:	n (cardinal) – the number of Repository elements requested which must be less than or equal to available()

	Returns:	an array of Repository elements.The length of the array is less than or equal to the number specified.

	Return type:	osid.repository.Repository

	Raise:	IllegalState – no more elements available in this list

	Raise:	OperationFailed – unable to complete request

Queries

Asset Query

	
class dlkit.repository.queries.AssetQuery

	Bases: dlkit.osid.queries.OsidObjectQuery, dlkit.osid.queries.OsidAggregateableQuery, dlkit.osid.queries.OsidSourceableQuery

This is the query for searching assets.

Each method specifies an AND term while multiple invocations of
the same method produce a nested OR. The query record is
identified by the Asset Type.

	
match_title(title, string_match_type, match)

	Adds a title for this query.

	Parameters:	
	title (string) – title string to match

	string_match_type (osid.type.Type) – the string match type

	match (boolean) – true for a positive match, false for a negative match

	Raise:	InvalidArgument – title not of string_match_type

	Raise:	NullArgument – title or string_match_type is null

	Raise:	Unsupported – supports_string_match_type(string_match_type) is false

	
match_any_title(match)

	Matches a title that has any value.

	Parameters:	match (boolean) – true to match assets with any title, false to match assets with no title

	
title_terms

	

	
match_public_domain(public_domain)

	Matches assets marked as public domain.

	Parameters:	public_domain (boolean) – public domain flag

	
match_any_public_domain(match)

	Matches assets with any public domain value.

	Parameters:	match (boolean) – true to match assets with any public domain value, false to match assets with no public domain value

	
public_domain_terms

	

	
match_copyright(copyright_, string_match_type, match)

	Adds a copyright for this query.

	Parameters:	
	copyright (string) – copyright string to match

	string_match_type (osid.type.Type) – the string match type

	match (boolean) – true for a positive match, false for a negative match

	Raise:	InvalidArgument – copyright not of string_match_type

	Raise:	NullArgument – copyright or string_match_type is null

	Raise:	Unsupported – supports_string_match_type(string_match_type) is false

	
match_any_copyright(match)

	Matches assets with any copyright statement.

	Parameters:	match (boolean) – true to match assets with any copyright value, false to match assets with no copyright value

	
copyright_terms

	

	
match_copyright_registration(registration, string_match_type, match)

	Adds a copyright registration for this query.

	Parameters:	
	registration (string) – copyright registration string to match

	string_match_type (osid.type.Type) – the string match type

	match (boolean) – true for a positive match, false for a negative match

	Raise:	InvalidArgument – registration not of string_match_type

	Raise:	NullArgument – registration or string_match_type is null

	Raise:	Unsupported – supports_string_match_type(string_match_type) is false

	
match_any_copyright_registration(match)

	Matches assets with any copyright registration.

	Parameters:	match (boolean) – true to match assets with any copyright registration value, false to match assets with no copyright registration value

	
copyright_registration_terms

	

	
match_distribute_verbatim(distributable)

	Matches assets marked as distributable.

	Parameters:	distributable (boolean) – distribute verbatim rights flag

	
distribute_verbatim_terms

	

	
match_distribute_alterations(alterable)

	Matches assets that whose alterations can be distributed.

	Parameters:	alterable (boolean) – distribute alterations rights flag

	
distribute_alterations_terms

	

	
match_distribute_compositions(composable)

	Matches assets that can be distributed as part of other compositions.

	Parameters:	composable (boolean) – distribute compositions rights flag

	
distribute_compositions_terms

	

	
match_source_id(source_id, match)

	Sets the source Id for this query.

	Parameters:	
	source_id (osid.id.Id) – the source Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – source_id is null

	
source_id_terms

	

	
supports_source_query()

	Tests if a ResourceQuery is available for the source.

	Returns:	true if a resource query is available, false otherwise

	Return type:	boolean

	
source_query

	Gets the query for the source.

Multiple queries can be retrieved for a nested OR term.

	Returns:	the source query

	Return type:	osid.resource.ResourceQuery

	Raise:	Unimplemented – supports_source_query() is false

	
match_any_source(match)

	Matches assets with any source.

	Parameters:	match (boolean) – true to match assets with any source, false to match assets with no sources

	
source_terms

	

	
match_created_date(start, end, match)

	Match assets that are created between the specified time period.

	Parameters:	
	start (osid.calendaring.DateTime) – start time of the query

	end (osid.calendaring.DateTime) – end time of the query

	match (boolean) – true for a positive match, false for a negative match

	Raise:	InvalidArgument – end is les than start

	Raise:	NullArgument – start or end is null

	
match_any_created_date(match)

	Matches assets with any creation time.

	Parameters:	match (boolean) – true to match assets with any created time, false to match assets with no cerated time

	
created_date_terms

	

	
match_published(published)

	Marks assets that are marked as published.

	Parameters:	published (boolean) – published flag

	
published_terms

	

	
match_published_date(start, end, match)

	Match assets that are published between the specified time period.

	Parameters:	
	start (osid.calendaring.DateTime) – start time of the query

	end (osid.calendaring.DateTime) – end time of the query

	match (boolean) – true for a positive match, false for a negative match

	Raise:	InvalidArgument – end is les than start

	Raise:	NullArgument – start or end is null

	
match_any_published_date(match)

	Matches assets with any published time.

	Parameters:	match (boolean) – true to match assets with any published time, false to match assets with no published time

	
published_date_terms

	

	
match_principal_credit_string(credit, string_match_type, match)

	Adds a principal credit string for this query.

	Parameters:	
	credit (string) – credit string to match

	string_match_type (osid.type.Type) – the string match type

	match (boolean) – true for a positive match, false for a negative match

	Raise:	InvalidArgument – credit not of string_match_type

	Raise:	NullArgument – credit or string_match_type is null

	Raise:	Unsupported – supports_string_match_type(string_match_type) is false

	
match_any_principal_credit_string(match)

	Matches a principal credit string that has any value.

	Parameters:	match (boolean) – true to match assets with any principal credit string, false to match assets with no principal credit string

	
principal_credit_string_terms

	

	
match_temporal_coverage(start, end, match)

	Match assets that whose coverage falls between the specified time period inclusive.

	Parameters:	
	start (osid.calendaring.DateTime) – start time of the query

	end (osid.calendaring.DateTime) – end time of the query

	match (boolean) – true for a positive match, false for a negative match

	Raise:	InvalidArgument – end is less than start

	Raise:	NullArgument – start or end is null

	
match_any_temporal_coverage(match)

	Matches assets with any temporal coverage.

	Parameters:	match (boolean) – true to match assets with any temporal coverage, false to match assets with no temporal coverage

	
temporal_coverage_terms

	

	
match_location_id(location_id, match)

	Sets the location Id for this query of spatial coverage.

	Parameters:	
	location_id (osid.id.Id) – the location Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – location_id is null

	
location_id_terms

	

	
supports_location_query()

	Tests if a LocationQuery is available for the provider.

	Returns:	true if a location query is available, false otherwise

	Return type:	boolean

	
location_query

	Gets the query for a location.

Multiple queries can be retrieved for a nested OR term.

	Returns:	the location query

	Return type:	osid.mapping.LocationQuery

	Raise:	Unimplemented – supports_location_query() is false

	
match_any_location(match)

	Matches assets with any provider.

	Parameters:	match (boolean) – true to match assets with any location, false to match assets with no locations

	
location_terms

	

	
match_spatial_coverage(spatial_unit, match)

	Matches assets that are contained within the given spatial unit.

	Parameters:	
	spatial_unit (osid.mapping.SpatialUnit) – the spatial unit

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – spatial_unit is null

	Raise:	Unsupported – spatial_unit is not suppoted

	
spatial_coverage_terms

	

	
match_spatial_coverage_overlap(spatial_unit, match)

	Matches assets that overlap or touch the given spatial unit.

	Parameters:	
	spatial_unit (osid.mapping.SpatialUnit) – the spatial unit

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – spatial_unit is null

	Raise:	Unsupported – spatial_unit is not suppoted

	
match_any_spatial_coverage(match)

	Matches assets with no spatial coverage.

	Parameters:	match (boolean) – true to match assets with any spatial coverage, false to match assets with no spatial coverage

	
spatial_coverage_overlap_terms

	

	
match_asset_content_id(asset_content_id, match)

	Sets the asset content Id for this query.

	Parameters:	
	asset_content_id (osid.id.Id) – the asset content Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – asset_content_id is null

	
asset_content_id_terms

	

	
supports_asset_content_query()

	Tests if an AssetContentQuery is available.

	Returns:	true if an asset content query is available, false otherwise

	Return type:	boolean

	
asset_content_query

	Gets the query for the asset content.

Multiple queries can be retrieved for a nested OR term.

	Returns:	the asset contents query

	Return type:	osid.repository.AssetContentQuery

	Raise:	Unimplemented – supports_asset_content_query() is false

	
match_any_asset_content(match)

	Matches assets with any content.

	Parameters:	match (boolean) – true to match assets with any content, false to match assets with no content

	
asset_content_terms

	

	
match_composition_id(composition_id, match)

	Sets the composition Id for this query to match assets that are a part of the composition.

	Parameters:	
	composition_id (osid.id.Id) – the composition Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – composition_id is null

	
composition_id_terms

	

	
supports_composition_query()

	Tests if a CompositionQuery is available.

	Returns:	true if a composition query is available, false otherwise

	Return type:	boolean

	
composition_query

	Gets the query for a composition.

Multiple queries can be retrieved for a nested OR term.

	Returns:	the composition query

	Return type:	osid.repository.CompositionQuery

	Raise:	Unimplemented – supports_composition_query() is false

	
match_any_composition(match)

	Matches assets with any composition mappings.

	Parameters:	match (boolean) – true to match assets with any composition, false to match assets with no composition mappings

	
composition_terms

	

	
match_repository_id(repository_id, match)

	Sets the repository Id for this query.

	Parameters:	
	repository_id (osid.id.Id) – the repository Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – repository_id is null

	
repository_id_terms

	

	
supports_repository_query()

	Tests if a RepositoryQuery is available.

	Returns:	true if a repository query is available, false otherwise

	Return type:	boolean

	
repository_query

	Gets the query for a repository.

Multiple queries can be retrieved for a nested OR term.

	Returns:	the repository query

	Return type:	osid.repository.RepositoryQuery

	Raise:	Unimplemented – supports_repository_query() is false

	
repository_terms

	

	
get_asset_query_record(asset_record_type)

	Gets the asset query record corresponding to the given Asset record Type.

Multiuple retrievals produce a nested OR term.

	Parameters:	asset_record_type (osid.type.Type) – an asset record type

	Returns:	the asset query record

	Return type:	osid.repository.records.AssetQueryRecord

	Raise:	NullArgument – asset_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(asset_record_type) is false

Asset Content Query

	
class dlkit.repository.queries.AssetContentQuery

	Bases: dlkit.osid.queries.OsidObjectQuery, dlkit.osid.queries.OsidSubjugateableQuery

This is the query for searching asset contents.

Each method forms an AND term while multiple invocations of the
same method produce a nested OR.

	
match_accessibility_type(accessibility_type, match)

	Sets the accessibility types for this query.

Supplying multiple types behaves like a boolean OR among the
elements.

	Parameters:	
	accessibility_type (osid.type.Type) – an accessibilityType

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – accessibility_type is null

	
match_any_accessibility_type(match)

	Matches asset content that has any accessibility type.

	Parameters:	match (boolean) – true to match content with any accessibility type, false to match content with no accessibility type

	
accessibility_type_terms

	

	
match_data_length(low, high, match)

	Matches content whose length of the data in bytes are inclusive of the given range.

	Parameters:	
	low (cardinal) – low range

	high (cardinal) – high range

	match (boolean) – true for a positive match, false for a negative match

	Raise:	InvalidArgument – low is greater than high

	
match_any_data_length(match)

	Matches content that has any data length.

	Parameters:	match (boolean) – true to match content with any data length, false to match content with no data length

	
data_length_terms

	

	
match_data(data, match, partial)

	Matches data in this content.

	Parameters:	
	data (byte[]) – list of matching strings

	match (boolean) – true for a positive match, false for a negative match

	partial (boolean) – true for a partial match, false for a complete match

	Raise:	NullArgument – data is null

	
match_any_data(match)

	Matches content that has any data.

	Parameters:	match (boolean) – true to match content with any data, false to match content with no data

	
data_terms

	

	
match_url(url, string_match_type, match)

	Sets the url for this query.

Supplying multiple strings behaves like a boolean OR among
the elements each which must correspond to the
stringMatchType.

	Parameters:	
	url (string) – url string to match

	string_match_type (osid.type.Type) – the string match type

	match (boolean) – true for a positive match, false for a negative match

	Raise:	InvalidArgument – url not of string_match_type

	Raise:	NullArgument – url or string_match_type is null

	Raise:	Unsupported – supports_string_match_type(url) is false

	
match_any_url(match)

	Matches content that has any url.

	Parameters:	match (boolean) – true to match content with any url, false to match content with no url

	
url_terms

	

	
get_asset_content_query_record(asset_content_record_type)

	Gets the asset content query record corresponding to the given AssetContent record Type.

Multiple record retrievals produce a nested OR term.

	Parameters:	asset_content_record_type (osid.type.Type) – an asset content record type

	Returns:	the asset content query record

	Return type:	osid.repository.records.AssetContentQueryRecord

	Raise:	NullArgument – asset_content_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(asset_content_record_type) is false

Repository Query

	
class dlkit.repository.queries.RepositoryQuery

	Bases: dlkit.osid.queries.OsidCatalogQuery

This is the query for searching repositories.

Each method specifies an AND term while multiple invocations of
the same method produce a nested OR.

	
match_asset_id(asset_id, match)

	Sets the asset Id for this query.

	Parameters:	
	asset_id (osid.id.Id) – an asset Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – asset_id is null

	
asset_id_terms

	

	
supports_asset_query()

	Tests if an AssetQuery is available.

	Returns:	true if an asset query is available, false otherwise

	Return type:	boolean

	
asset_query

	Gets the query for an asset.

Multiple retrievals produce a nested OR term.

	Returns:	the asset query

	Return type:	osid.repository.AssetQuery

	Raise:	Unimplemented – supports_asset_query() is false

	
match_any_asset(match)

	Matches repositories that has any asset mapping.

	Parameters:	match (boolean) – true to match repositories with any asset, false to match repositories with no asset

	
asset_terms

	

	
match_composition_id(composition_id, match)

	Sets the composition Id for this query.

	Parameters:	
	composition_id (osid.id.Id) – a composition Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – composition_id is null

	
composition_id_terms

	

	
supports_composition_query()

	Tests if a CompositionQuery is available.

	Returns:	true if a composition query is available, false otherwise

	Return type:	boolean

	
composition_query

	Gets the query for a composition.

Multiple retrievals produce a nested OR term.

	Returns:	the composition query

	Return type:	osid.repository.CompositionQuery

	Raise:	Unimplemented – supports_composition_query() is false

	
match_any_composition(match)

	Matches repositories that has any composition mapping.

	Parameters:	match (boolean) – true to match repositories with any composition, false to match repositories with no composition

	
composition_terms

	

	
match_ancestor_repository_id(repository_id, match)

	Sets the repository Id for this query to match repositories that have the specified repository as an ancestor.

	Parameters:	
	repository_id (osid.id.Id) – a repository Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – repository_id is null

	
ancestor_repository_id_terms

	

	
supports_ancestor_repository_query()

	Tests if a RepositoryQuery is available.

	Returns:	true if a repository query is available, false otherwise

	Return type:	boolean

	
ancestor_repository_query

	Gets the query for a repository.

Multiple retrievals produce a nested OR term.

	Returns:	the repository query

	Return type:	osid.repository.RepositoryQuery

	Raise:	Unimplemented – supports_ancestor_repository_query() is false

	
match_any_ancestor_repository(match)

	Matches repositories with any ancestor.

	Parameters:	match (boolean) – true to match repositories with any ancestor, false to match root repositories

	
ancestor_repository_terms

	

	
match_descendant_repository_id(repository_id, match)

	Sets the repository Id for this query to match repositories that have the specified repository as a descendant.

	Parameters:	
	repository_id (osid.id.Id) – a repository Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – repository_id is null

	
descendant_repository_id_terms

	

	
supports_descendant_repository_query()

	Tests if a RepositoryQuery is available.

	Returns:	true if a repository query is available, false otherwise

	Return type:	boolean

	
descendant_repository_query

	Gets the query for a repository.

Multiple retrievals produce a nested OR term.

	Returns:	the repository query

	Return type:	osid.repository.RepositoryQuery

	Raise:	Unimplemented – supports_descendant_repository_query() is false

	
match_any_descendant_repository(match)

	Matches repositories with any descendant.

	Parameters:	match (boolean) – true to match repositories with any descendant, false to match leaf repositories

	
descendant_repository_terms

	

	
get_repository_query_record(repository_record_type)

	Gets the repository query record corresponding to the given Repository record Type.

Multiple record retrievals produce a nested OR term.

	Parameters:	repository_record_type (osid.type.Type) – a repository record type

	Returns:	the repository query record

	Return type:	osid.repository.records.RepositoryQueryRecord

	Raise:	NullArgument – repository_record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – has_record_type(repository_record_type) is false

Records

Asset Record

	
class dlkit.repository.records.AssetRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an Asset.

The methods specified by the record type are available through the
underlying object.

Asset Query Record

	
class dlkit.repository.records.AssetQueryRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an AssetQuery.

The methods specified by the record type are available through the
underlying object.

Asset Form Record

	
class dlkit.repository.records.AssetFormRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an AssetForm.

The methods specified by the record type are available through the
underlying object.

Asset Content Record

	
class dlkit.repository.records.AssetContentRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an AssetContent.

The methods specified by the record type are available through the
underlying object.

Asset Content Query Record

	
class dlkit.repository.records.AssetContentQueryRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an AssetContentQuery.

The methods specified by the record type are available through the
underlying object.

Asset Content Form Record

	
class dlkit.repository.records.AssetContentFormRecord

	Bases: dlkit.osid.records.OsidRecord

A record for an AssetForm.

The methods specified by the record type are available through the
underlying object.

Repository Record

	
class dlkit.repository.records.RepositoryRecord

	Bases: dlkit.osid.records.OsidRecord

A record for a Repository.

The methods specified by the record type are available through the
underlying object.

Repository Query Record

	
class dlkit.repository.records.RepositoryQueryRecord

	Bases: dlkit.osid.records.OsidRecord

A record for a RepositoryQuery.

The methods specified by the record type are available through the
underlying object.

Repository Form Record

	
class dlkit.repository.records.RepositoryFormRecord

	Bases: dlkit.osid.records.OsidRecord

A record for a RepositoryForm.

The methods specified by the record type are available through the
underlying object.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dlkit	

 	
 	
 dlkit.assessment.objects	

 	
 	
 dlkit.assessment.queries	

 	
 	
 dlkit.assessment.records	

 	
 	
 dlkit.assessment.rules	

 	
 	
 dlkit.commenting.objects	

 	
 	
 dlkit.commenting.queries	

 	
 	
 dlkit.commenting.records	

 	
 	
 dlkit.learning.objects	

 	
 	
 dlkit.learning.queries	

 	
 	
 dlkit.learning.records	

 	
 	
 dlkit.osid.managers	

 	
 	
 dlkit.osid.markers	

 	
 	
 dlkit.osid.metadata	

 	
 	
 dlkit.osid.objects	

 	
 	
 dlkit.osid.queries	

 	
 	
 dlkit.osid.records	

 	
 	
 dlkit.osid.rules	

 	
 	
 dlkit.repository.objects	

 	
 	
 dlkit.repository.queries	

 	
 	
 dlkit.repository.records	

 	
 	
 dlkit.services.assessment	

 	
 	
 dlkit.services.commenting	

 	
 	
 dlkit.services.learning	

 	
 	
 dlkit.services.osid	

 	
 	
 dlkit.services.repository	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

A

 	
 	accessibility_type_metadata (dlkit.repository.objects.AssetContentForm attribute)

 	accessibility_type_terms (dlkit.repository.queries.AssetContentQuery attribute)

 	accessibility_types (dlkit.repository.objects.AssetContent attribute)

 	(dlkit.repository.objects.AssetContentForm attribute)

 	active_terms (dlkit.osid.queries.OsidOperableQuery attribute)

 	activities (dlkit.services.learning.ObjectiveBank attribute)

 	Activity (class in dlkit.learning.objects)

 	activity_id_terms (dlkit.learning.queries.ObjectiveBankQuery attribute)

 	(dlkit.learning.queries.ObjectiveQuery attribute)

 	activity_query (dlkit.learning.queries.ObjectiveBankQuery attribute)

 	(dlkit.learning.queries.ObjectiveQuery attribute)

 	activity_record_types (dlkit.services.learning.LearningManager attribute)

 	activity_search_record_types (dlkit.services.learning.LearningManager attribute)

 	activity_terms (dlkit.learning.queries.ObjectiveBankQuery attribute)

 	(dlkit.learning.queries.ObjectiveQuery attribute)

 	ActivityForm (class in dlkit.learning.objects)

 	ActivityFormRecord (class in dlkit.learning.records)

 	ActivityList (class in dlkit.learning.objects)

 	ActivityQuery (class in dlkit.learning.queries)

 	ActivityQueryRecord (class in dlkit.learning.records)

 	ActivityRecord (class in dlkit.learning.records)

 	actual_start_time (dlkit.assessment.objects.AssessmentTaken attribute)

 	actual_start_time_terms (dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	add_accessibility_type() (dlkit.repository.objects.AssetContentForm method)

 	add_child_bank() (dlkit.services.assessment.AssessmentManager method)

 	add_child_book() (dlkit.services.commenting.CommentingManager method)

 	add_child_objective() (dlkit.services.learning.ObjectiveBank method)

 	add_child_objective_bank() (dlkit.services.learning.LearningManager method)

 	add_item() (dlkit.services.assessment.Bank method)

 	add_root_bank() (dlkit.services.assessment.AssessmentManager method)

 	add_root_book() (dlkit.services.commenting.CommentingManager method)

 	add_root_objective() (dlkit.services.learning.ObjectiveBank method)

 	add_root_objective_bank() (dlkit.services.learning.LearningManager method)

 	Aggregateable (class in dlkit.osid.markers)

 	alias_activity() (dlkit.services.learning.ObjectiveBank method)

 	alias_assessment() (dlkit.services.assessment.Bank method)

 	alias_assessment_offered() (dlkit.services.assessment.Bank method)

 	alias_assessment_taken() (dlkit.services.assessment.Bank method)

 	alias_asset() (dlkit.services.repository.Repository method)

 	alias_bank() (dlkit.services.assessment.AssessmentManager method)

 	alias_book() (dlkit.services.commenting.CommentingManager method)

 	alias_comment() (dlkit.services.commenting.Book method)

 	alias_item() (dlkit.services.assessment.Bank method)

 	alias_objective() (dlkit.services.learning.ObjectiveBank method)

 	alias_objective_bank() (dlkit.services.learning.LearningManager method)

 	alias_repository() (dlkit.services.repository.RepositoryManager method)

 	allocated_time (dlkit.assessment.objects.AssessmentSection attribute)

 	ancestor_bank_id_terms (dlkit.assessment.queries.BankQuery attribute)

 	ancestor_bank_query (dlkit.assessment.queries.BankQuery attribute)

 	ancestor_bank_terms (dlkit.assessment.queries.BankQuery attribute)

 	ancestor_book_id_terms (dlkit.commenting.queries.BookQuery attribute)

 	ancestor_book_query (dlkit.commenting.queries.BookQuery attribute)

 	ancestor_book_terms (dlkit.commenting.queries.BookQuery attribute)

 	ancestor_objective_bank_id_terms (dlkit.learning.queries.ObjectiveBankQuery attribute)

 	ancestor_objective_bank_query (dlkit.learning.queries.ObjectiveBankQuery attribute)

 	ancestor_objective_bank_terms (dlkit.learning.queries.ObjectiveBankQuery attribute)

 	ancestor_objective_id_terms (dlkit.learning.queries.ObjectiveQuery attribute)

 	ancestor_objective_query (dlkit.learning.queries.ObjectiveQuery attribute)

 	ancestor_objective_terms (dlkit.learning.queries.ObjectiveQuery attribute)

 	ancestor_repository_id_terms (dlkit.repository.queries.RepositoryQuery attribute)

 	ancestor_repository_query (dlkit.repository.queries.RepositoryQuery attribute)

 	ancestor_repository_terms (dlkit.repository.queries.RepositoryQuery attribute)

 	Answer (class in dlkit.assessment.objects)

 	answer_id_terms (dlkit.assessment.queries.ItemQuery attribute)

 	answer_ids (dlkit.assessment.objects.Item attribute)

 	answer_query (dlkit.assessment.queries.ItemQuery attribute)

 	answer_terms (dlkit.assessment.queries.ItemQuery attribute)

 	AnswerForm (class in dlkit.assessment.objects)

 	AnswerFormRecord (class in dlkit.assessment.records)

 	AnswerList (class in dlkit.assessment.objects)

 	AnswerQuery (class in dlkit.assessment.queries)

 	AnswerQueryRecord (class in dlkit.assessment.records)

 	AnswerRecord (class in dlkit.assessment.records)

 	answers (dlkit.assessment.objects.Item attribute)

 	any_terms (dlkit.osid.queries.OsidQuery attribute)

 	are_items_sequential() (dlkit.assessment.objects.AssessmentOffered method)

 	(dlkit.assessment.objects.AssessmentSection method)

 	are_items_shuffled() (dlkit.assessment.objects.AssessmentOffered method)

 	(dlkit.assessment.objects.AssessmentSection method)

 	Assessment (class in dlkit.assessment.objects)

 	assessment (dlkit.assessment.objects.AssessmentOffered attribute)

 	(dlkit.learning.objects.Objective attribute)

 	(dlkit.learning.objects.ObjectiveForm attribute)

 	assessment_authoring_manager (dlkit.services.assessment.AssessmentManager attribute)

 	assessment_batch_manager (dlkit.services.assessment.AssessmentManager attribute)

 	assessment_id (dlkit.assessment.objects.AssessmentOffered attribute)

 	(dlkit.learning.objects.Objective attribute)

 	assessment_id_terms (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	(dlkit.assessment.queries.BankQuery attribute)

 	(dlkit.assessment.queries.ItemQuery attribute)

 	(dlkit.learning.queries.ActivityQuery attribute)

 	(dlkit.learning.queries.ObjectiveQuery attribute)

 	assessment_ids (dlkit.learning.objects.Activity attribute)

 	assessment_metadata (dlkit.learning.objects.ObjectiveForm attribute)

 	assessment_offered (dlkit.assessment.objects.AssessmentTaken attribute)

 	assessment_offered_id (dlkit.assessment.objects.AssessmentTaken attribute)

 	assessment_offered_id_terms (dlkit.assessment.queries.AssessmentQuery attribute)

 	(dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	(dlkit.assessment.queries.BankQuery attribute)

 	assessment_offered_query (dlkit.assessment.queries.AssessmentQuery attribute)

 	(dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	(dlkit.assessment.queries.BankQuery attribute)

 	(dlkit.services.assessment.Bank attribute)

 	
 	assessment_offered_record_types (dlkit.services.assessment.AssessmentManager attribute)

 	assessment_offered_search_record_types (dlkit.services.assessment.AssessmentManager attribute)

 	assessment_offered_terms (dlkit.assessment.queries.AssessmentQuery attribute)

 	(dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	(dlkit.assessment.queries.BankQuery attribute)

 	assessment_query (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	(dlkit.assessment.queries.BankQuery attribute)

 	(dlkit.assessment.queries.ItemQuery attribute)

 	(dlkit.learning.queries.ActivityQuery attribute)

 	(dlkit.learning.queries.ObjectiveQuery attribute)

 	(dlkit.services.assessment.Bank attribute)

 	assessment_record_types (dlkit.services.assessment.AssessmentManager attribute)

 	assessment_search_record_types (dlkit.services.assessment.AssessmentManager attribute)

 	assessment_section_record_types (dlkit.services.assessment.AssessmentManager attribute)

 	assessment_taken (dlkit.assessment.objects.AssessmentSection attribute)

 	assessment_taken_id (dlkit.assessment.objects.AssessmentSection attribute)

 	assessment_taken_id_terms (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	(dlkit.assessment.queries.AssessmentQuery attribute)

 	assessment_taken_query (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	(dlkit.assessment.queries.AssessmentQuery attribute)

 	(dlkit.services.assessment.Bank attribute)

 	assessment_taken_record_types (dlkit.services.assessment.AssessmentManager attribute)

 	assessment_taken_search_record_types (dlkit.services.assessment.AssessmentManager attribute)

 	assessment_taken_terms (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	(dlkit.assessment.queries.AssessmentQuery attribute)

 	assessment_terms (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	(dlkit.assessment.queries.BankQuery attribute)

 	(dlkit.assessment.queries.ItemQuery attribute)

 	(dlkit.learning.queries.ActivityQuery attribute)

 	(dlkit.learning.queries.ObjectiveQuery attribute)

 	AssessmentForm (class in dlkit.assessment.objects)

 	AssessmentFormRecord (class in dlkit.assessment.records)

 	AssessmentList (class in dlkit.assessment.objects)

 	AssessmentManager (class in dlkit.services.assessment)

 	AssessmentOffered (class in dlkit.assessment.objects)

 	AssessmentOfferedForm (class in dlkit.assessment.objects)

 	AssessmentOfferedFormRecord (class in dlkit.assessment.records)

 	AssessmentOfferedList (class in dlkit.assessment.objects)

 	AssessmentOfferedQuery (class in dlkit.assessment.queries)

 	AssessmentOfferedQueryRecord (class in dlkit.assessment.records)

 	AssessmentOfferedRecord (class in dlkit.assessment.records)

 	AssessmentQuery (class in dlkit.assessment.queries)

 	AssessmentQueryRecord (class in dlkit.assessment.records)

 	AssessmentRecord (class in dlkit.assessment.records)

 	assessments (dlkit.learning.objects.Activity attribute)

 	(dlkit.learning.objects.ActivityForm attribute)

 	(dlkit.services.assessment.Bank attribute)

 	assessments_metadata (dlkit.learning.objects.ActivityForm attribute)

 	assessments_offered (dlkit.services.assessment.Bank attribute)

 	assessments_taken (dlkit.services.assessment.Bank attribute)

 	AssessmentSection (class in dlkit.assessment.objects)

 	AssessmentSectionList (class in dlkit.assessment.objects)

 	AssessmentSectionRecord (class in dlkit.assessment.records)

 	AssessmentTaken (class in dlkit.assessment.objects)

 	AssessmentTakenForm (class in dlkit.assessment.objects)

 	AssessmentTakenFormRecord (class in dlkit.assessment.records)

 	AssessmentTakenList (class in dlkit.assessment.objects)

 	AssessmentTakenQuery (class in dlkit.assessment.queries)

 	AssessmentTakenQueryRecord (class in dlkit.assessment.records)

 	AssessmentTakenRecord (class in dlkit.assessment.records)

 	Asset (class in dlkit.repository.objects)

 	asset (dlkit.repository.objects.AssetContent attribute)

 	asset_content_id_terms (dlkit.repository.queries.AssetQuery attribute)

 	asset_content_ids (dlkit.repository.objects.Asset attribute)

 	asset_content_query (dlkit.repository.queries.AssetQuery attribute)

 	asset_content_record_types (dlkit.services.repository.RepositoryManager attribute)

 	asset_content_terms (dlkit.repository.queries.AssetQuery attribute)

 	asset_contents (dlkit.repository.objects.Asset attribute)

 	asset_id (dlkit.repository.objects.AssetContent attribute)

 	asset_id_terms (dlkit.learning.queries.ActivityQuery attribute)

 	(dlkit.repository.queries.RepositoryQuery attribute)

 	asset_ids (dlkit.learning.objects.Activity attribute)

 	asset_query (dlkit.learning.queries.ActivityQuery attribute)

 	(dlkit.repository.queries.RepositoryQuery attribute)

 	(dlkit.services.repository.Repository attribute)

 	asset_record_types (dlkit.services.repository.RepositoryManager attribute)

 	asset_search_record_types (dlkit.services.repository.RepositoryManager attribute)

 	asset_terms (dlkit.learning.queries.ActivityQuery attribute)

 	(dlkit.repository.queries.RepositoryQuery attribute)

 	AssetContent (class in dlkit.repository.objects)

 	AssetContentForm (class in dlkit.repository.objects)

 	AssetContentFormRecord (class in dlkit.repository.records)

 	AssetContentList (class in dlkit.repository.objects)

 	AssetContentQuery (class in dlkit.repository.queries)

 	AssetContentQueryRecord (class in dlkit.repository.records)

 	AssetContentRecord (class in dlkit.repository.records)

 	AssetForm (class in dlkit.repository.objects)

 	AssetFormRecord (class in dlkit.repository.records)

 	AssetList (class in dlkit.repository.objects)

 	AssetQuery (class in dlkit.repository.queries)

 	AssetQueryRecord (class in dlkit.repository.records)

 	AssetRecord (class in dlkit.repository.records)

 	assets (dlkit.learning.objects.Activity attribute)

 	(dlkit.learning.objects.ActivityForm attribute)

 	(dlkit.services.repository.Repository attribute)

 	assets_metadata (dlkit.learning.objects.ActivityForm attribute)

 	assign_equivalent_objective() (dlkit.services.learning.ObjectiveBank method)

 	assign_objective_requisite() (dlkit.services.learning.ObjectiveBank method)

 	available() (dlkit.osid.objects.OsidList method)

B

 	
 	Bank (class in dlkit.services.assessment)

 	bank_hierarchy (dlkit.services.assessment.AssessmentManager attribute), [1]

 	bank_hierarchy_id (dlkit.services.assessment.AssessmentManager attribute), [1]

 	bank_id_terms (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	(dlkit.assessment.queries.AssessmentQuery attribute)

 	(dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	(dlkit.assessment.queries.ItemQuery attribute)

 	bank_query (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	(dlkit.assessment.queries.AssessmentQuery attribute)

 	(dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	(dlkit.assessment.queries.ItemQuery attribute)

 	bank_record_types (dlkit.services.assessment.AssessmentManager attribute)

 	bank_search_record_types (dlkit.services.assessment.AssessmentManager attribute)

 	bank_terms (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	(dlkit.assessment.queries.AssessmentQuery attribute)

 	(dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	(dlkit.assessment.queries.ItemQuery attribute)

 	BankForm (class in dlkit.assessment.objects)

 	BankFormRecord (class in dlkit.assessment.records)

 	BankList (class in dlkit.assessment.objects)

 	BankQuery (class in dlkit.assessment.queries)

 	BankQueryRecord (class in dlkit.assessment.records)

 	BankRecord (class in dlkit.assessment.records)

 	banks (dlkit.services.assessment.AssessmentManager attribute)

 	
 	Book (class in dlkit.services.commenting)

 	book_hierarchy (dlkit.services.commenting.CommentingManager attribute), [1]

 	book_hierarchy_id (dlkit.services.commenting.CommentingManager attribute), [1]

 	book_id_terms (dlkit.commenting.queries.CommentQuery attribute)

 	book_query (dlkit.commenting.queries.CommentQuery attribute)

 	book_record_types (dlkit.services.commenting.CommentingManager attribute)

 	book_search_record_types (dlkit.services.commenting.CommentingManager attribute)

 	book_terms (dlkit.commenting.queries.CommentQuery attribute)

 	BookForm (class in dlkit.commenting.objects)

 	BookFormRecord (class in dlkit.commenting.records)

 	BookList (class in dlkit.commenting.objects)

 	BookQuery (class in dlkit.commenting.queries)

 	BookQueryRecord (class in dlkit.commenting.records)

 	BookRecord (class in dlkit.commenting.records)

 	books (dlkit.services.commenting.CommentingManager attribute)

 	branch (dlkit.osid.managers.OsidProfile attribute)

 	branch_id (dlkit.osid.managers.OsidProfile attribute)

 	branding (dlkit.osid.markers.Sourceable attribute)

 	(dlkit.osid.objects.OsidSourceableForm attribute)

 	branding_id_terms (dlkit.osid.queries.OsidSourceableQuery attribute)

 	branding_ids (dlkit.osid.markers.Sourceable attribute)

 	branding_metadata (dlkit.osid.objects.OsidSourceableForm attribute)

 	branding_terms (dlkit.osid.queries.OsidSourceableQuery attribute)

 	Browsable (class in dlkit.osid.markers)

C

 	
 	calendar_types (dlkit.osid.metadata.Metadata attribute)

 	can_access_bank_hierarchy() (dlkit.services.assessment.AssessmentManager method)

 	can_access_book_hierarchy() (dlkit.services.commenting.CommentingManager method)

 	can_access_objective_bank_hierarchy() (dlkit.services.learning.LearningManager method)

 	can_access_objective_hierarchy() (dlkit.services.learning.ObjectiveBank method)

 	can_assign_requisites() (dlkit.services.learning.ObjectiveBank method)

 	can_author_assessments() (dlkit.services.assessment.Bank method)

 	can_create_activities() (dlkit.services.learning.ObjectiveBank method)

 	can_create_activity_with_record_types() (dlkit.services.learning.ObjectiveBank method)

 	can_create_answers() (dlkit.services.assessment.Bank method)

 	can_create_answers_with_record_types() (dlkit.services.assessment.Bank method)

 	can_create_assessment_offered_with_record_types() (dlkit.services.assessment.Bank method)

 	can_create_assessment_taken_with_record_types() (dlkit.services.assessment.Bank method)

 	can_create_assessment_with_record_types() (dlkit.services.assessment.Bank method)

 	can_create_assessments() (dlkit.services.assessment.Bank method)

 	can_create_assessments_offered() (dlkit.services.assessment.Bank method)

 	can_create_assessments_taken() (dlkit.services.assessment.Bank method)

 	can_create_asset_content() (dlkit.services.repository.Repository method)

 	can_create_asset_content_with_record_types() (dlkit.services.repository.Repository method)

 	can_create_asset_with_record_types() (dlkit.services.repository.Repository method)

 	can_create_assets() (dlkit.services.repository.Repository method)

 	can_create_bank_with_record_types() (dlkit.services.assessment.AssessmentManager method)

 	can_create_banks() (dlkit.services.assessment.AssessmentManager method)

 	can_create_book_with_record_types() (dlkit.services.commenting.CommentingManager method)

 	can_create_books() (dlkit.services.commenting.CommentingManager method)

 	can_create_comment_with_record_types() (dlkit.services.commenting.Book method)

 	can_create_comments() (dlkit.services.commenting.Book method)

 	can_create_item_with_record_types() (dlkit.services.assessment.Bank method)

 	can_create_items() (dlkit.services.assessment.Bank method)

 	can_create_objective_bank_with_record_types() (dlkit.services.learning.LearningManager method)

 	can_create_objective_banks() (dlkit.services.learning.LearningManager method)

 	can_create_objective_with_record_types() (dlkit.services.learning.ObjectiveBank method)

 	can_create_objectives() (dlkit.services.learning.ObjectiveBank method)

 	can_create_question_with_record_types() (dlkit.services.assessment.Bank method)

 	can_create_questions() (dlkit.services.assessment.Bank method)

 	can_create_repositories() (dlkit.services.repository.RepositoryManager method)

 	can_create_repository_with_record_types() (dlkit.services.repository.RepositoryManager method)

 	can_delete_activities() (dlkit.services.learning.ObjectiveBank method)

 	can_delete_answers() (dlkit.services.assessment.Bank method)

 	can_delete_assessments() (dlkit.services.assessment.Bank method)

 	can_delete_assessments_offered() (dlkit.services.assessment.Bank method)

 	can_delete_assessments_taken() (dlkit.services.assessment.Bank method)

 	can_delete_asset_contents() (dlkit.services.repository.Repository method)

 	can_delete_assets() (dlkit.services.repository.Repository method)

 	can_delete_banks() (dlkit.services.assessment.AssessmentManager method)

 	can_delete_books() (dlkit.services.commenting.CommentingManager method)

 	can_delete_comments() (dlkit.services.commenting.Book method)

 	can_delete_items() (dlkit.services.assessment.Bank method)

 	can_delete_objective_banks() (dlkit.services.learning.LearningManager method)

 	can_delete_objectives() (dlkit.services.learning.ObjectiveBank method)

 	can_delete_questions() (dlkit.services.assessment.Bank method)

 	can_delete_repositories() (dlkit.services.repository.RepositoryManager method)

 	can_distribute_alterations() (dlkit.repository.objects.Asset method)

 	can_distribute_compositions() (dlkit.repository.objects.Asset method)

 	can_distribute_verbatim() (dlkit.repository.objects.Asset method)

 	can_lookup_activities() (dlkit.services.learning.ObjectiveBank method)

 	can_lookup_assessments() (dlkit.services.assessment.Bank method)

 	can_lookup_assessments_offered() (dlkit.services.assessment.Bank method)

 	can_lookup_assessments_taken() (dlkit.services.assessment.Bank method)

 	can_lookup_assets() (dlkit.services.repository.Repository method)

 	can_lookup_banks() (dlkit.services.assessment.AssessmentManager method)

 	can_lookup_books() (dlkit.services.commenting.CommentingManager method)

 	can_lookup_comments() (dlkit.services.commenting.Book method)

 	can_lookup_items() (dlkit.services.assessment.Bank method)

 	can_lookup_objective_banks() (dlkit.services.learning.LearningManager method)

 	can_lookup_objective_prerequisites() (dlkit.services.learning.ObjectiveBank method)

 	can_lookup_objectives() (dlkit.services.learning.ObjectiveBank method)

 	can_lookup_repositories() (dlkit.services.repository.RepositoryManager method)

 	can_manage_activity_aliases() (dlkit.services.learning.ObjectiveBank method)

 	can_manage_assessment_aliases() (dlkit.services.assessment.Bank method)

 	can_manage_assessment_offered_aliases() (dlkit.services.assessment.Bank method)

 	can_manage_assessment_taken_aliases() (dlkit.services.assessment.Bank method)

 	can_manage_asset_aliases() (dlkit.services.repository.Repository method)

 	can_manage_bank_aliases() (dlkit.services.assessment.AssessmentManager method)

 	can_manage_book_aliases() (dlkit.services.commenting.CommentingManager method)

 	can_manage_comment_aliases() (dlkit.services.commenting.Book method)

 	can_manage_item_aliases() (dlkit.services.assessment.Bank method)

 	can_manage_objective_aliases() (dlkit.services.learning.ObjectiveBank method)

 	can_manage_objective_bank_aliases() (dlkit.services.learning.LearningManager method)

 	can_manage_repository_aliases() (dlkit.services.repository.RepositoryManager method)

 	can_modify_bank_hierarchy() (dlkit.services.assessment.AssessmentManager method)

 	can_modify_book_hierarchy() (dlkit.services.commenting.CommentingManager method)

 	can_modify_objective_bank_hierarchy() (dlkit.services.learning.LearningManager method)

 	can_modify_objective_hierarchy() (dlkit.services.learning.ObjectiveBank method)

 	can_search_assessments() (dlkit.services.assessment.Bank method)

 	can_search_assessments_offered() (dlkit.services.assessment.Bank method)

 	can_search_assessments_taken() (dlkit.services.assessment.Bank method)

 	can_search_assets() (dlkit.services.repository.Repository method)

 	can_search_comments() (dlkit.services.commenting.Book method)

 	can_search_items() (dlkit.services.assessment.Bank method)

 	can_sequence_objectives() (dlkit.services.learning.ObjectiveBank method)

 	can_take_assessments() (dlkit.services.assessment.Bank method)

 	can_update_activities() (dlkit.services.learning.ObjectiveBank method)

 	can_update_answers() (dlkit.services.assessment.Bank method)

 	can_update_assessments() (dlkit.services.assessment.Bank method)

 	can_update_assessments_offered() (dlkit.services.assessment.Bank method)

 	can_update_assessments_taken() (dlkit.services.assessment.Bank method)

 	can_update_asset_contents() (dlkit.services.repository.Repository method)

 	can_update_assets() (dlkit.services.repository.Repository method)

 	can_update_banks() (dlkit.services.assessment.AssessmentManager method)

 	can_update_books() (dlkit.services.commenting.CommentingManager method)

 	can_update_comments() (dlkit.services.commenting.Book method)

 	can_update_items() (dlkit.services.assessment.Bank method)

 	can_update_objective_banks() (dlkit.services.learning.LearningManager method)

 	can_update_objectives() (dlkit.services.learning.ObjectiveBank method)

 	
 	can_update_questions() (dlkit.services.assessment.Bank method)

 	can_update_repositories() (dlkit.services.repository.RepositoryManager method)

 	cardinal_set (dlkit.osid.metadata.Metadata attribute)

 	change_branch() (dlkit.services.osid.OsidRuntimeManager method), [1]

 	child_ids (dlkit.osid.objects.OsidNode attribute)

 	clear_response() (dlkit.services.assessment.Bank method)

 	cognitive_process (dlkit.learning.objects.Objective attribute)

 	(dlkit.learning.objects.ObjectiveForm attribute)

 	cognitive_process_id (dlkit.learning.objects.Objective attribute)

 	cognitive_process_id_terms (dlkit.learning.queries.ObjectiveQuery attribute)

 	cognitive_process_metadata (dlkit.learning.objects.ObjectiveForm attribute)

 	cognitive_process_query (dlkit.learning.queries.ObjectiveQuery attribute)

 	cognitive_process_terms (dlkit.learning.queries.ObjectiveQuery attribute)

 	Comment (class in dlkit.commenting.objects)

 	comment_id_terms (dlkit.commenting.queries.BookQuery attribute)

 	(dlkit.osid.queries.OsidObjectQuery attribute)

 	comment_query (dlkit.commenting.queries.BookQuery attribute)

 	(dlkit.osid.queries.OsidObjectQuery attribute)

 	(dlkit.services.commenting.Book attribute)

 	comment_record_types (dlkit.services.commenting.CommentingManager attribute)

 	comment_search_record_types (dlkit.services.commenting.CommentingManager attribute)

 	comment_terms (dlkit.commenting.queries.BookQuery attribute)

 	(dlkit.osid.queries.OsidObjectQuery attribute)

 	CommentForm (class in dlkit.commenting.objects)

 	CommentFormRecord (class in dlkit.commenting.records)

 	commenting_agent (dlkit.commenting.objects.Comment attribute)

 	commenting_agent_id (dlkit.commenting.objects.Comment attribute)

 	commenting_agent_id_terms (dlkit.commenting.queries.CommentQuery attribute)

 	commenting_agent_query (dlkit.commenting.queries.CommentQuery attribute)

 	commenting_agent_terms (dlkit.commenting.queries.CommentQuery attribute)

 	commenting_batch_manager (dlkit.services.commenting.CommentingManager attribute)

 	CommentingManager (class in dlkit.services.commenting)

 	CommentList (class in dlkit.commenting.objects)

 	commentor (dlkit.commenting.objects.Comment attribute)

 	commentor_id (dlkit.commenting.objects.Comment attribute)

 	commentor_id_terms (dlkit.commenting.queries.CommentQuery attribute)

 	commentor_query (dlkit.commenting.queries.CommentQuery attribute)

 	commentor_terms (dlkit.commenting.queries.CommentQuery attribute)

 	CommentQuery (class in dlkit.commenting.queries)

 	CommentQueryRecord (class in dlkit.commenting.records)

 	CommentRecord (class in dlkit.commenting.records)

 	comments (dlkit.services.commenting.Book attribute)

 	completion (dlkit.assessment.objects.AssessmentTaken attribute)

 	completion_time (dlkit.assessment.objects.AssessmentTaken attribute)

 	completion_time_terms (dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	composition (dlkit.repository.objects.Asset attribute)

 	(dlkit.repository.objects.AssetForm attribute)

 	composition_id (dlkit.repository.objects.Asset attribute)

 	composition_id_terms (dlkit.repository.queries.AssetQuery attribute)

 	(dlkit.repository.queries.RepositoryQuery attribute)

 	composition_metadata (dlkit.repository.objects.AssetForm attribute)

 	composition_query (dlkit.repository.queries.AssetQuery attribute)

 	(dlkit.repository.queries.RepositoryQuery attribute)

 	composition_record_types (dlkit.services.repository.RepositoryManager attribute)

 	composition_search_record_types (dlkit.services.repository.RepositoryManager attribute)

 	composition_terms (dlkit.repository.queries.AssetQuery attribute)

 	(dlkit.repository.queries.RepositoryQuery attribute)

 	configuration (dlkit.services.osid.OsidRuntimeManager attribute)

 	Containable (class in dlkit.osid.markers)

 	coordinate_set (dlkit.osid.metadata.Metadata attribute)

 	coordinate_types (dlkit.osid.metadata.Metadata attribute)

 	(dlkit.services.repository.RepositoryManager attribute)

 	copyright_metadata (dlkit.repository.objects.AssetForm attribute)

 	copyright_registration (dlkit.repository.objects.Asset attribute)

 	(dlkit.repository.objects.AssetForm attribute)

 	copyright_registration_metadata (dlkit.repository.objects.AssetForm attribute)

 	copyright_registration_terms (dlkit.repository.queries.AssetQuery attribute)

 	copyright_terms (dlkit.repository.queries.AssetQuery attribute)

 	course_id_terms (dlkit.learning.queries.ActivityQuery attribute)

 	course_ids (dlkit.learning.objects.Activity attribute)

 	course_query (dlkit.learning.queries.ActivityQuery attribute)

 	course_terms (dlkit.learning.queries.ActivityQuery attribute)

 	courses (dlkit.learning.objects.Activity attribute)

 	(dlkit.learning.objects.ActivityForm attribute)

 	courses_metadata (dlkit.learning.objects.ActivityForm attribute)

 	create_activity() (dlkit.services.learning.ObjectiveBank method)

 	create_answer() (dlkit.services.assessment.Bank method)

 	create_assessment() (dlkit.services.assessment.Bank method)

 	create_assessment_offered() (dlkit.services.assessment.Bank method)

 	create_assessment_taken() (dlkit.services.assessment.Bank method)

 	create_asset() (dlkit.services.repository.Repository method)

 	create_asset_content() (dlkit.services.repository.Repository method)

 	create_bank() (dlkit.services.assessment.AssessmentManager method)

 	create_book() (dlkit.services.commenting.CommentingManager method)

 	create_comment() (dlkit.services.commenting.Book method)

 	create_item() (dlkit.services.assessment.Bank method)

 	create_objective() (dlkit.services.learning.ObjectiveBank method)

 	create_objective_bank() (dlkit.services.learning.LearningManager method)

 	create_question() (dlkit.services.assessment.Bank method)

 	create_repository() (dlkit.services.repository.RepositoryManager method)

 	created_date (dlkit.repository.objects.Asset attribute)

 	(dlkit.repository.objects.AssetForm attribute)

 	created_date_metadata (dlkit.repository.objects.AssetForm attribute)

 	created_date_terms (dlkit.repository.queries.AssetQuery attribute)

 	credit_id_terms (dlkit.osid.queries.OsidObjectQuery attribute)

 	credit_query (dlkit.osid.queries.OsidObjectQuery attribute)

 	credit_terms (dlkit.osid.queries.OsidObjectQuery attribute)

 	currency_set (dlkit.osid.metadata.Metadata attribute)

 	currency_types (dlkit.osid.metadata.Metadata attribute)

 	cyclic_event (dlkit.osid.objects.OsidEnabler attribute)

 	(dlkit.osid.objects.OsidEnablerForm attribute)

 	cyclic_event_id (dlkit.osid.objects.OsidEnabler attribute)

 	cyclic_event_id_terms (dlkit.osid.queries.OsidEnablerQuery attribute)

 	cyclic_event_metadata (dlkit.osid.objects.OsidEnablerForm attribute)

 	cyclic_event_query (dlkit.osid.queries.OsidEnablerQuery attribute)

 	cyclic_event_terms (dlkit.osid.queries.OsidEnablerQuery attribute)

D

 	
 	data (dlkit.repository.objects.AssetContent attribute)

 	(dlkit.repository.objects.AssetContentForm attribute)

 	data_length (dlkit.repository.objects.AssetContent attribute)

 	data_length_terms (dlkit.repository.queries.AssetContentQuery attribute)

 	data_metadata (dlkit.repository.objects.AssetContentForm attribute)

 	data_terms (dlkit.repository.queries.AssetContentQuery attribute)

 	date_terms (dlkit.osid.queries.OsidTemporalQuery attribute)

 	date_time_resolution (dlkit.osid.metadata.Metadata attribute)

 	date_time_set (dlkit.osid.metadata.Metadata attribute)

 	deadline (dlkit.assessment.objects.AssessmentOffered attribute)

 	(dlkit.assessment.objects.AssessmentOfferedForm attribute)

 	deadline_metadata (dlkit.assessment.objects.AssessmentOfferedForm attribute)

 	deadline_terms (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	decimal_scale (dlkit.osid.metadata.Metadata attribute)

 	decimal_set (dlkit.osid.metadata.Metadata attribute)

 	default_cardinal_values (dlkit.osid.metadata.Metadata attribute)

 	default_coordinate_values (dlkit.osid.metadata.Metadata attribute)

 	default_currency_values (dlkit.osid.metadata.Metadata attribute)

 	default_date_time_values (dlkit.osid.metadata.Metadata attribute)

 	default_decimal_values (dlkit.osid.metadata.Metadata attribute)

 	default_distance_values (dlkit.osid.metadata.Metadata attribute)

 	default_duration_values (dlkit.osid.metadata.Metadata attribute)

 	default_heading_values (dlkit.osid.metadata.Metadata attribute)

 	default_id_values (dlkit.osid.metadata.Metadata attribute)

 	default_integer_values (dlkit.osid.metadata.Metadata attribute)

 	default_locale (dlkit.osid.objects.OsidForm attribute)

 	default_object_values (dlkit.osid.metadata.Metadata attribute)

 	default_spatial_unit_values (dlkit.osid.metadata.Metadata attribute)

 	default_speed_values (dlkit.osid.metadata.Metadata attribute)

 	default_string_values (dlkit.osid.metadata.Metadata attribute)

 	default_time_values (dlkit.osid.metadata.Metadata attribute)

 	default_type_values (dlkit.osid.metadata.Metadata attribute)

 	default_version_values (dlkit.osid.metadata.Metadata attribute)

 	delete_activity() (dlkit.services.learning.ObjectiveBank method)

 	delete_answer() (dlkit.services.assessment.Bank method)

 	delete_assessment() (dlkit.services.assessment.Bank method)

 	delete_assessment_offered() (dlkit.services.assessment.Bank method)

 	delete_assessment_taken() (dlkit.services.assessment.Bank method)

 	delete_asset() (dlkit.services.repository.Repository method)

 	delete_asset_content() (dlkit.services.repository.Repository method)

 	delete_bank() (dlkit.services.assessment.AssessmentManager method)

 	delete_book() (dlkit.services.commenting.CommentingManager method)

 	delete_comment() (dlkit.services.commenting.Book method)

 	delete_item() (dlkit.services.assessment.Bank method)

 	delete_objective() (dlkit.services.learning.ObjectiveBank method)

 	delete_objective_bank() (dlkit.services.learning.LearningManager method)

 	delete_question() (dlkit.services.assessment.Bank method)

 	delete_repository() (dlkit.services.repository.RepositoryManager method)

 	demographic (dlkit.osid.objects.OsidEnabler attribute)

 	(dlkit.osid.objects.OsidEnablerForm attribute)

 	demographic_id (dlkit.osid.objects.OsidEnabler attribute)

 	demographic_id_terms (dlkit.osid.queries.OsidEnablerQuery attribute)

 	demographic_metadata (dlkit.osid.objects.OsidEnablerForm attribute)

 	demographic_terms (dlkit.osid.queries.OsidEnablerQuery attribute)

 	dependent_objective_id_terms (dlkit.learning.queries.ObjectiveQuery attribute)

 	dependent_objective_query (dlkit.learning.queries.ObjectiveQuery attribute)

 	dependent_objective_terms (dlkit.learning.queries.ObjectiveQuery attribute)

 	descendant_bank_id_terms (dlkit.assessment.queries.BankQuery attribute)

 	descendant_bank_query (dlkit.assessment.queries.BankQuery attribute)

 	descendant_bank_terms (dlkit.assessment.queries.BankQuery attribute)

 	descendant_book_id_terms (dlkit.commenting.queries.BookQuery attribute)

 	descendant_book_query (dlkit.commenting.queries.BookQuery attribute)

 	descendant_book_terms (dlkit.commenting.queries.BookQuery attribute)

 	
 	descendant_objective_bank_id_terms (dlkit.learning.queries.ObjectiveBankQuery attribute)

 	descendant_objective_bank_query (dlkit.learning.queries.ObjectiveBankQuery attribute)

 	descendant_objective_bank_terms (dlkit.learning.queries.ObjectiveBankQuery attribute)

 	descendant_objective_id_terms (dlkit.learning.queries.ObjectiveQuery attribute)

 	descendant_objective_query (dlkit.learning.queries.ObjectiveQuery attribute)

 	descendant_objective_terms (dlkit.learning.queries.ObjectiveQuery attribute)

 	descendant_repository_id_terms (dlkit.repository.queries.RepositoryQuery attribute)

 	descendant_repository_query (dlkit.repository.queries.RepositoryQuery attribute)

 	descendant_repository_terms (dlkit.repository.queries.RepositoryQuery attribute)

 	description (dlkit.osid.managers.OsidProfile attribute)

 	(dlkit.osid.objects.OsidObject attribute)

 	(dlkit.osid.objects.OsidObjectForm attribute)

 	description_metadata (dlkit.osid.objects.OsidObjectForm attribute)

 	description_terms (dlkit.osid.queries.OsidObjectQuery attribute)

 	disabled (dlkit.osid.objects.OsidOperableForm attribute)

 	disabled_metadata (dlkit.osid.objects.OsidOperableForm attribute)

 	disabled_terms (dlkit.osid.queries.OsidOperableQuery attribute)

 	display_name (dlkit.osid.managers.OsidProfile attribute)

 	(dlkit.osid.objects.OsidObject attribute)

 	(dlkit.osid.objects.OsidObjectForm attribute)

 	display_name_metadata (dlkit.osid.objects.OsidObjectForm attribute)

 	display_name_terms (dlkit.osid.queries.OsidObjectQuery attribute)

 	distance_resolution (dlkit.osid.metadata.Metadata attribute)

 	distance_set (dlkit.osid.metadata.Metadata attribute)

 	distribute_alterations (dlkit.repository.objects.AssetForm attribute)

 	distribute_alterations_metadata (dlkit.repository.objects.AssetForm attribute)

 	distribute_alterations_terms (dlkit.repository.queries.AssetQuery attribute)

 	distribute_compositions (dlkit.repository.objects.AssetForm attribute)

 	distribute_compositions_metadata (dlkit.repository.objects.AssetForm attribute)

 	distribute_compositions_terms (dlkit.repository.queries.AssetQuery attribute)

 	distribute_verbatim (dlkit.repository.objects.AssetForm attribute)

 	distribute_verbatim_metadata (dlkit.repository.objects.AssetForm attribute)

 	distribute_verbatim_terms (dlkit.repository.queries.AssetQuery attribute)

 	dlkit.assessment.objects (module)

 	dlkit.assessment.queries (module)

 	dlkit.assessment.records (module)

 	dlkit.assessment.rules (module)

 	dlkit.commenting.objects (module)

 	dlkit.commenting.queries (module)

 	dlkit.commenting.records (module)

 	dlkit.learning.objects (module)

 	dlkit.learning.queries (module)

 	dlkit.learning.records (module)

 	dlkit.osid.managers (module)

 	dlkit.osid.markers (module)

 	dlkit.osid.metadata (module)

 	dlkit.osid.objects (module)

 	dlkit.osid.queries (module)

 	dlkit.osid.records (module)

 	dlkit.osid.rules (module)

 	dlkit.repository.objects (module)

 	dlkit.repository.queries (module)

 	dlkit.repository.records (module)

 	dlkit.services.assessment (module), [1]

 	dlkit.services.commenting (module), [1]

 	dlkit.services.learning (module), [1]

 	dlkit.services.osid (module), [1]

 	dlkit.services.repository (module), [1]

 	duration (dlkit.assessment.objects.AssessmentOffered attribute)

 	(dlkit.assessment.objects.AssessmentOfferedForm attribute)

 	duration_metadata (dlkit.assessment.objects.AssessmentOfferedForm attribute)

 	duration_set (dlkit.osid.metadata.Metadata attribute)

 	duration_terms (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

E

 	
 	effective_terms (dlkit.osid.queries.OsidTemporalQuery attribute)

 	element_id (dlkit.osid.metadata.Metadata attribute)

 	element_label (dlkit.osid.metadata.Metadata attribute)

 	enabled (dlkit.osid.objects.OsidOperableForm attribute)

 	enabled_metadata (dlkit.osid.objects.OsidOperableForm attribute)

 	enabled_terms (dlkit.osid.queries.OsidOperableQuery attribute)

 	end_date (dlkit.osid.markers.Temporal attribute)

 	(dlkit.osid.objects.OsidCompendium attribute)

 	(dlkit.osid.objects.OsidCompendiumForm attribute)

 	(dlkit.osid.objects.OsidTemporalForm attribute)

 	end_date_metadata (dlkit.osid.objects.OsidCompendiumForm attribute)

 	(dlkit.osid.objects.OsidTemporalForm attribute)

 	end_date_terms (dlkit.osid.queries.OsidCompendiumQuery attribute)

 	(dlkit.osid.queries.OsidTemporalQuery attribute)

 	end_reason (dlkit.osid.objects.OsidRelationship attribute)

 	end_reason_id (dlkit.osid.objects.OsidRelationship attribute)

 	end_reason_id_terms (dlkit.osid.queries.OsidRelationshipQuery attribute)

 	end_reason_terms (dlkit.osid.queries.OsidRelationshipQuery attribute)

 	equivalent_objective_id_terms (dlkit.learning.queries.ObjectiveQuery attribute)

 	equivalent_objective_query (dlkit.learning.queries.ObjectiveQuery attribute)

 	equivalent_objective_terms (dlkit.learning.queries.ObjectiveQuery attribute)

 	event (dlkit.osid.objects.OsidEnabler attribute)

 	(dlkit.osid.objects.OsidEnablerForm attribute)

 	event_id (dlkit.osid.objects.OsidEnabler attribute)

 	
 	event_id_terms (dlkit.osid.queries.OsidEnablerQuery attribute)

 	event_metadata (dlkit.osid.objects.OsidEnablerForm attribute)

 	event_terms (dlkit.osid.queries.OsidEnablerQuery attribute)

 	existing_cardinal_values (dlkit.osid.metadata.Metadata attribute)

 	existing_coordinate_values (dlkit.osid.metadata.Metadata attribute)

 	existing_currency_values (dlkit.osid.metadata.Metadata attribute)

 	existing_date_time_values (dlkit.osid.metadata.Metadata attribute)

 	existing_decimal_values (dlkit.osid.metadata.Metadata attribute)

 	existing_distance_values (dlkit.osid.metadata.Metadata attribute)

 	existing_duration_values (dlkit.osid.metadata.Metadata attribute)

 	existing_heading_values (dlkit.osid.metadata.Metadata attribute)

 	existing_id_values (dlkit.osid.metadata.Metadata attribute)

 	existing_integer_values (dlkit.osid.metadata.Metadata attribute)

 	existing_object_values (dlkit.osid.metadata.Metadata attribute)

 	existing_spatial_unit_values (dlkit.osid.metadata.Metadata attribute)

 	existing_speed_values (dlkit.osid.metadata.Metadata attribute)

 	existing_string_values (dlkit.osid.metadata.Metadata attribute)

 	existing_time_values (dlkit.osid.metadata.Metadata attribute)

 	existing_type_values (dlkit.osid.metadata.Metadata attribute)

 	existing_version_values (dlkit.osid.metadata.Metadata attribute)

 	Extensible (class in dlkit.osid.markers)

 	extrapolated (dlkit.osid.objects.OsidCompendiumForm attribute)

 	extrapolated_metadata (dlkit.osid.objects.OsidCompendiumForm attribute)

 	extrapolated_terms (dlkit.osid.queries.OsidCompendiumQuery attribute)

F

 	
 	Federateable (class in dlkit.osid.markers)

 	feedback (dlkit.assessment.objects.AssessmentTaken attribute)

 	
 	feedback_terms (dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	finish_assessment() (dlkit.services.assessment.Bank method)

 	finish_assessment_section() (dlkit.services.assessment.Bank method)

G

 	
 	genus_type (dlkit.osid.objects.OsidObject attribute)

 	(dlkit.osid.objects.OsidObjectForm attribute)

 	genus_type_metadata (dlkit.osid.objects.OsidObjectForm attribute)

 	genus_type_terms (dlkit.osid.queries.OsidObjectQuery attribute)

 	get_activities_by_asset() (dlkit.services.learning.ObjectiveBank method)

 	get_activities_by_assets() (dlkit.services.learning.ObjectiveBank method)

 	get_activities_by_genus_type() (dlkit.services.learning.ObjectiveBank method)

 	get_activities_by_ids() (dlkit.services.learning.ObjectiveBank method)

 	get_activities_by_parent_genus_type() (dlkit.services.learning.ObjectiveBank method)

 	get_activities_by_record_type() (dlkit.services.learning.ObjectiveBank method)

 	get_activities_for_objective() (dlkit.services.learning.ObjectiveBank method)

 	get_activities_for_objectives() (dlkit.services.learning.ObjectiveBank method)

 	get_activity() (dlkit.services.learning.ObjectiveBank method)

 	get_activity_form_for_create() (dlkit.services.learning.ObjectiveBank method)

 	get_activity_form_for_update() (dlkit.services.learning.ObjectiveBank method)

 	get_activity_form_record() (dlkit.learning.objects.ActivityForm method)

 	get_activity_query_record() (dlkit.learning.queries.ActivityQuery method)

 	get_activity_record() (dlkit.learning.objects.Activity method)

 	get_all_requisite_objectives() (dlkit.services.learning.ObjectiveBank method)

 	get_answer_form_for_create() (dlkit.services.assessment.Bank method)

 	get_answer_form_for_update() (dlkit.services.assessment.Bank method)

 	get_answer_form_record() (dlkit.assessment.objects.AnswerForm method)

 	get_answer_query_record() (dlkit.assessment.queries.AnswerQuery method)

 	get_answer_record() (dlkit.assessment.objects.Answer method)

 	get_answers() (dlkit.services.assessment.Bank method)

 	get_assessment() (dlkit.services.assessment.Bank method)

 	get_assessment_form_for_create() (dlkit.services.assessment.Bank method)

 	get_assessment_form_for_update() (dlkit.services.assessment.Bank method)

 	get_assessment_form_record() (dlkit.assessment.objects.AssessmentForm method)

 	get_assessment_offered() (dlkit.services.assessment.Bank method)

 	get_assessment_offered_form_for_create() (dlkit.services.assessment.Bank method)

 	get_assessment_offered_form_for_update() (dlkit.services.assessment.Bank method)

 	get_assessment_offered_form_record() (dlkit.assessment.objects.AssessmentOfferedForm method)

 	get_assessment_offered_query_record() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	get_assessment_offered_record() (dlkit.assessment.objects.AssessmentOffered method)

 	get_assessment_query_record() (dlkit.assessment.queries.AssessmentQuery method)

 	get_assessment_record() (dlkit.assessment.objects.Assessment method)

 	get_assessment_section() (dlkit.services.assessment.Bank method)

 	get_assessment_section_record() (dlkit.assessment.objects.AssessmentSection method)

 	get_assessment_sections() (dlkit.services.assessment.Bank method)

 	get_assessment_taken() (dlkit.services.assessment.Bank method)

 	get_assessment_taken_form_for_create() (dlkit.services.assessment.Bank method)

 	get_assessment_taken_form_for_update() (dlkit.services.assessment.Bank method)

 	get_assessment_taken_form_record() (dlkit.assessment.objects.AssessmentTakenForm method)

 	get_assessment_taken_query_record() (dlkit.assessment.queries.AssessmentTakenQuery method)

 	get_assessment_taken_record() (dlkit.assessment.objects.AssessmentTaken method)

 	get_assessments_by_genus_type() (dlkit.services.assessment.Bank method)

 	get_assessments_by_ids() (dlkit.services.assessment.Bank method)

 	get_assessments_by_parent_genus_type() (dlkit.services.assessment.Bank method)

 	get_assessments_by_query() (dlkit.services.assessment.Bank method)

 	get_assessments_by_record_type() (dlkit.services.assessment.Bank method)

 	get_assessments_offered_by_date() (dlkit.services.assessment.Bank method)

 	get_assessments_offered_by_genus_type() (dlkit.services.assessment.Bank method)

 	get_assessments_offered_by_ids() (dlkit.services.assessment.Bank method)

 	get_assessments_offered_by_parent_genus_type() (dlkit.services.assessment.Bank method)

 	get_assessments_offered_by_query() (dlkit.services.assessment.Bank method)

 	get_assessments_offered_by_record_type() (dlkit.services.assessment.Bank method)

 	get_assessments_offered_for_assessment() (dlkit.services.assessment.Bank method)

 	get_assessments_taken_by_date() (dlkit.services.assessment.Bank method)

 	get_assessments_taken_by_date_for_assessment() (dlkit.services.assessment.Bank method)

 	get_assessments_taken_by_date_for_assessment_offered() (dlkit.services.assessment.Bank method)

 	get_assessments_taken_by_date_for_taker() (dlkit.services.assessment.Bank method)

 	get_assessments_taken_by_date_for_taker_and_assessment() (dlkit.services.assessment.Bank method)

 	get_assessments_taken_by_date_for_taker_and_assessment_offered() (dlkit.services.assessment.Bank method)

 	get_assessments_taken_by_genus_type() (dlkit.services.assessment.Bank method)

 	get_assessments_taken_by_ids() (dlkit.services.assessment.Bank method)

 	get_assessments_taken_by_parent_genus_type() (dlkit.services.assessment.Bank method)

 	get_assessments_taken_by_query() (dlkit.services.assessment.Bank method)

 	get_assessments_taken_by_record_type() (dlkit.services.assessment.Bank method)

 	get_assessments_taken_for_assessment() (dlkit.services.assessment.Bank method)

 	get_assessments_taken_for_assessment_offered() (dlkit.services.assessment.Bank method)

 	get_assessments_taken_for_taker() (dlkit.services.assessment.Bank method)

 	get_assessments_taken_for_taker_and_assessment() (dlkit.services.assessment.Bank method)

 	get_assessments_taken_for_taker_and_assessment_offered() (dlkit.services.assessment.Bank method)

 	get_asset() (dlkit.services.repository.Repository method)

 	get_asset_content_form_for_create() (dlkit.services.repository.Repository method)

 	get_asset_content_form_for_update() (dlkit.services.repository.Repository method)

 	get_asset_content_form_record() (dlkit.repository.objects.AssetContentForm method)

 	get_asset_content_query_record() (dlkit.repository.queries.AssetContentQuery method)

 	get_asset_content_record() (dlkit.repository.objects.AssetContent method)

 	get_asset_form_for_create() (dlkit.services.repository.Repository method)

 	get_asset_form_for_update() (dlkit.services.repository.Repository method)

 	get_asset_form_record() (dlkit.repository.objects.AssetForm method)

 	get_asset_query_record() (dlkit.repository.queries.AssetQuery method)

 	get_asset_record() (dlkit.repository.objects.Asset method)

 	get_assets_by_genus_type() (dlkit.services.repository.Repository method)

 	get_assets_by_ids() (dlkit.services.repository.Repository method)

 	get_assets_by_parent_genus_type() (dlkit.services.repository.Repository method)

 	get_assets_by_provider() (dlkit.services.repository.Repository method)

 	get_assets_by_query() (dlkit.services.repository.Repository method)

 	get_assets_by_record_type() (dlkit.services.repository.Repository method)

 	get_axes_for_coordinate_type() (dlkit.osid.metadata.Metadata method)

 	get_axes_for_heading_type() (dlkit.osid.metadata.Metadata method)

 	get_bank_form_for_create() (dlkit.services.assessment.AssessmentManager method)

 	get_bank_form_for_update() (dlkit.services.assessment.AssessmentManager method)

 	get_bank_form_record() (dlkit.assessment.objects.BankForm method)

 	get_bank_node_ids() (dlkit.services.assessment.AssessmentManager method)

 	get_bank_nodes() (dlkit.services.assessment.AssessmentManager method)

 	get_bank_query_record() (dlkit.assessment.queries.BankQuery method)

 	get_bank_record() (dlkit.services.assessment.Bank method)

 	get_banks_by_genus_type() (dlkit.services.assessment.AssessmentManager method)

 	get_banks_by_ids() (dlkit.services.assessment.AssessmentManager method)

 	get_banks_by_parent_genus_type() (dlkit.services.assessment.AssessmentManager method)

 	get_banks_by_provider() (dlkit.services.assessment.AssessmentManager method)

 	get_banks_by_record_type() (dlkit.services.assessment.AssessmentManager method)

 	get_book_form_for_create() (dlkit.services.commenting.CommentingManager method)

 	get_book_form_for_update() (dlkit.services.commenting.CommentingManager method)

 	get_book_form_record() (dlkit.commenting.objects.BookForm method)

 	get_book_node_ids() (dlkit.services.commenting.CommentingManager method)

 	get_book_nodes() (dlkit.services.commenting.CommentingManager method)

 	get_book_query_record() (dlkit.commenting.queries.BookQuery method)

 	get_book_record() (dlkit.services.commenting.Book method)

 	get_books_by_genus_type() (dlkit.services.commenting.CommentingManager method)

 	get_books_by_ids() (dlkit.services.commenting.CommentingManager method)

 	get_books_by_parent_genus_type() (dlkit.services.commenting.CommentingManager method)

 	get_books_by_provider() (dlkit.services.commenting.CommentingManager method)

 	get_books_by_record_type() (dlkit.services.commenting.CommentingManager method)

 	get_branding_query() (dlkit.osid.queries.OsidSourceableQuery method)

 	get_child_bank_ids() (dlkit.services.assessment.AssessmentManager method)

 	get_child_banks() (dlkit.services.assessment.AssessmentManager method)

 	get_child_book_ids() (dlkit.services.commenting.CommentingManager method)

 	get_child_books() (dlkit.services.commenting.CommentingManager method)

 	get_child_objective_bank_ids() (dlkit.services.learning.LearningManager method)

 	get_child_objective_banks() (dlkit.services.learning.LearningManager method)

 	get_child_objective_ids() (dlkit.services.learning.ObjectiveBank method)

 	get_child_objectives() (dlkit.services.learning.ObjectiveBank method)

 	get_comment() (dlkit.services.commenting.Book method)

 	get_comment_form_for_create() (dlkit.services.commenting.Book method)

 	get_comment_form_for_update() (dlkit.services.commenting.Book method)

 	get_comment_form_record() (dlkit.commenting.objects.CommentForm method)

 	get_comment_query_record() (dlkit.commenting.queries.CommentQuery method)

 	get_comment_record() (dlkit.commenting.objects.Comment method)

 	get_comments_by_genus_type() (dlkit.services.commenting.Book method)

 	get_comments_by_genus_type_for_commentor() (dlkit.services.commenting.Book method)

 	get_comments_by_genus_type_for_commentor_and_reference() (dlkit.services.commenting.Book method)

 	get_comments_by_genus_type_for_commentor_and_reference_on_date() (dlkit.services.commenting.Book method)

 	get_comments_by_genus_type_for_commentor_on_date() (dlkit.services.commenting.Book method)

 	get_comments_by_genus_type_for_reference() (dlkit.services.commenting.Book method)

 	
 	get_comments_by_genus_type_for_reference_on_date() (dlkit.services.commenting.Book method)

 	get_comments_by_genus_type_on_date() (dlkit.services.commenting.Book method)

 	get_comments_by_ids() (dlkit.services.commenting.Book method)

 	get_comments_by_parent_genus_type() (dlkit.services.commenting.Book method)

 	get_comments_by_query() (dlkit.services.commenting.Book method)

 	get_comments_by_record_type() (dlkit.services.commenting.Book method)

 	get_comments_for_commentor() (dlkit.services.commenting.Book method)

 	get_comments_for_commentor_and_reference() (dlkit.services.commenting.Book method)

 	get_comments_for_commentor_and_reference_on_date() (dlkit.services.commenting.Book method)

 	get_comments_for_commentor_on_date() (dlkit.services.commenting.Book method)

 	get_comments_for_reference() (dlkit.services.commenting.Book method)

 	get_comments_for_reference_on_date() (dlkit.services.commenting.Book method)

 	get_comments_on_date() (dlkit.services.commenting.Book method)

 	get_demographic_query() (dlkit.osid.queries.OsidEnablerQuery method)

 	get_dependent_objectives() (dlkit.services.learning.ObjectiveBank method)

 	get_end_reason_query() (dlkit.osid.queries.OsidRelationshipQuery method)

 	get_equivalent_objectives() (dlkit.services.learning.ObjectiveBank method)

 	get_event_query() (dlkit.osid.queries.OsidEnablerQuery method)

 	get_first_assessment_section() (dlkit.services.assessment.Bank method)

 	get_first_question() (dlkit.services.assessment.Bank method)

 	get_first_unanswered_question() (dlkit.services.assessment.Bank method)

 	get_incomplete_assessment_sections() (dlkit.services.assessment.Bank method)

 	get_item() (dlkit.services.assessment.Bank method)

 	get_item_form_for_create() (dlkit.services.assessment.Bank method)

 	get_item_form_for_update() (dlkit.services.assessment.Bank method)

 	get_item_form_record() (dlkit.assessment.objects.ItemForm method)

 	get_item_query_record() (dlkit.assessment.queries.ItemQuery method)

 	get_item_record() (dlkit.assessment.objects.Item method)

 	get_items() (dlkit.services.assessment.Bank method)

 	get_items_by_answer() (dlkit.services.assessment.Bank method)

 	get_items_by_genus_type() (dlkit.services.assessment.Bank method)

 	get_items_by_ids() (dlkit.services.assessment.Bank method)

 	get_items_by_learning_objective() (dlkit.services.assessment.Bank method)

 	get_items_by_learning_objectives() (dlkit.services.assessment.Bank method)

 	get_items_by_parent_genus_type() (dlkit.services.assessment.Bank method)

 	get_items_by_query() (dlkit.services.assessment.Bank method)

 	get_items_by_question() (dlkit.services.assessment.Bank method)

 	get_items_by_record_type() (dlkit.services.assessment.Bank method)

 	get_manager() (dlkit.services.osid.OsidRuntimeManager method)

 	get_maximum_coordinate_values() (dlkit.osid.metadata.Metadata method)

 	get_maximum_heading_values() (dlkit.osid.metadata.Metadata method)

 	get_minimum_coordinate_values() (dlkit.osid.metadata.Metadata method)

 	get_minimum_heading_values() (dlkit.osid.metadata.Metadata method)

 	get_next_activities() (dlkit.learning.objects.ActivityList method)

 	get_next_answers() (dlkit.assessment.objects.AnswerList method)

 	get_next_assessment_section() (dlkit.services.assessment.Bank method)

 	get_next_assessment_sections() (dlkit.assessment.objects.AssessmentSectionList method)

 	get_next_assessments() (dlkit.assessment.objects.AssessmentList method)

 	get_next_assessments_offered() (dlkit.assessment.objects.AssessmentOfferedList method)

 	get_next_assessments_taken() (dlkit.assessment.objects.AssessmentTakenList method)

 	get_next_asset_contents() (dlkit.repository.objects.AssetContentList method)

 	get_next_assets() (dlkit.repository.objects.AssetList method)

 	get_next_banks() (dlkit.assessment.objects.BankList method)

 	get_next_books() (dlkit.commenting.objects.BookList method)

 	get_next_comments() (dlkit.commenting.objects.CommentList method)

 	get_next_items() (dlkit.assessment.objects.ItemList method)

 	get_next_objective_banks() (dlkit.learning.objects.ObjectiveBankList method)

 	get_next_objectives() (dlkit.learning.objects.ObjectiveList method)

 	get_next_question() (dlkit.services.assessment.Bank method)

 	get_next_questions() (dlkit.assessment.objects.QuestionList method)

 	get_next_repositories() (dlkit.repository.objects.RepositoryList method)

 	get_next_responses() (dlkit.assessment.objects.ResponseList method)

 	get_next_unanswered_question() (dlkit.services.assessment.Bank method)

 	get_objective() (dlkit.services.learning.ObjectiveBank method)

 	get_objective_bank_form_for_create() (dlkit.services.learning.LearningManager method)

 	get_objective_bank_form_for_update() (dlkit.services.learning.LearningManager method)

 	get_objective_bank_form_record() (dlkit.learning.objects.ObjectiveBankForm method)

 	get_objective_bank_node_ids() (dlkit.services.learning.LearningManager method)

 	get_objective_bank_nodes() (dlkit.services.learning.LearningManager method)

 	get_objective_bank_query_record() (dlkit.learning.queries.ObjectiveBankQuery method)

 	get_objective_bank_record() (dlkit.services.learning.ObjectiveBank method)

 	get_objective_banks_by_genus_type() (dlkit.services.learning.LearningManager method)

 	get_objective_banks_by_ids() (dlkit.services.learning.LearningManager method)

 	get_objective_banks_by_parent_genus_type() (dlkit.services.learning.LearningManager method)

 	get_objective_banks_by_provider() (dlkit.services.learning.LearningManager method)

 	get_objective_banks_by_record_type() (dlkit.services.learning.LearningManager method)

 	get_objective_form_for_create() (dlkit.services.learning.ObjectiveBank method)

 	get_objective_form_for_update() (dlkit.services.learning.ObjectiveBank method)

 	get_objective_form_record() (dlkit.learning.objects.ObjectiveForm method)

 	get_objective_node_ids() (dlkit.services.learning.ObjectiveBank method)

 	get_objective_nodes() (dlkit.services.learning.ObjectiveBank method)

 	get_objective_query_record() (dlkit.learning.queries.ObjectiveQuery method)

 	get_objective_record() (dlkit.learning.objects.Objective method)

 	get_objectives_by_genus_type() (dlkit.services.learning.ObjectiveBank method)

 	get_objectives_by_ids() (dlkit.services.learning.ObjectiveBank method)

 	get_objectives_by_parent_genus_type() (dlkit.services.learning.ObjectiveBank method)

 	get_objectives_by_record_type() (dlkit.services.learning.ObjectiveBank method)

 	get_parent_bank_ids() (dlkit.services.assessment.AssessmentManager method)

 	get_parent_banks() (dlkit.services.assessment.AssessmentManager method)

 	get_parent_book_ids() (dlkit.services.commenting.CommentingManager method)

 	get_parent_books() (dlkit.services.commenting.CommentingManager method)

 	get_parent_objective_bank_ids() (dlkit.services.learning.LearningManager method)

 	get_parent_objective_banks() (dlkit.services.learning.LearningManager method)

 	get_parent_objective_ids() (dlkit.services.learning.ObjectiveBank method)

 	get_parent_objectives() (dlkit.services.learning.ObjectiveBank method)

 	get_previous_assessment_section() (dlkit.services.assessment.Bank method)

 	get_previous_question() (dlkit.services.assessment.Bank method)

 	get_previous_unanswered_question() (dlkit.services.assessment.Bank method)

 	get_properties_by_record_type() (dlkit.osid.markers.Browsable method)

 	get_provider_query() (dlkit.osid.queries.OsidSourceableQuery method)

 	get_proxy_manager() (dlkit.services.osid.OsidRuntimeManager method)

 	get_question() (dlkit.services.assessment.Bank method)

 	get_question_form_for_create() (dlkit.services.assessment.Bank method)

 	get_question_form_for_update() (dlkit.services.assessment.Bank method)

 	get_question_form_record() (dlkit.assessment.objects.QuestionForm method)

 	get_question_query_record() (dlkit.assessment.queries.QuestionQuery method)

 	get_question_record() (dlkit.assessment.objects.Question method)

 	get_questions() (dlkit.services.assessment.Bank method)

 	get_repositories_by_genus_type() (dlkit.services.repository.RepositoryManager method)

 	get_repositories_by_ids() (dlkit.services.repository.RepositoryManager method)

 	get_repositories_by_parent_genus_type() (dlkit.services.repository.RepositoryManager method)

 	get_repositories_by_provider() (dlkit.services.repository.RepositoryManager method)

 	get_repositories_by_record_type() (dlkit.services.repository.RepositoryManager method)

 	get_repository_form_for_create() (dlkit.services.repository.RepositoryManager method)

 	get_repository_form_for_update() (dlkit.services.repository.RepositoryManager method)

 	get_repository_form_record() (dlkit.repository.objects.RepositoryForm method)

 	get_repository_query_record() (dlkit.repository.queries.RepositoryQuery method)

 	get_repository_record() (dlkit.services.repository.Repository method)

 	get_requisite_objectives() (dlkit.services.learning.ObjectiveBank method)

 	get_response() (dlkit.services.assessment.Bank method)

 	get_response_form() (dlkit.services.assessment.Bank method)

 	get_response_record() (dlkit.assessment.rules.Response method)

 	get_responses() (dlkit.services.assessment.Bank method)

 	get_rule_query() (dlkit.osid.queries.OsidRuleQuery method)

 	get_schedule_query() (dlkit.osid.queries.OsidEnablerQuery method)

 	get_string_expression() (dlkit.osid.metadata.Metadata method)

 	get_unanswered_questions() (dlkit.services.assessment.Bank method)

 	grade (dlkit.assessment.objects.AssessmentTaken attribute)

 	grade_id (dlkit.assessment.objects.AssessmentTaken attribute)

 	grade_id_terms (dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	grade_query (dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	grade_system (dlkit.assessment.objects.AssessmentOffered attribute)

 	(dlkit.assessment.objects.AssessmentOfferedForm attribute)

 	grade_system_id (dlkit.assessment.objects.AssessmentOffered attribute)

 	grade_system_id_terms (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	grade_system_metadata (dlkit.assessment.objects.AssessmentOfferedForm attribute)

 	grade_system_query (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	grade_system_terms (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	grade_terms (dlkit.assessment.queries.AssessmentTakenQuery attribute)

H

 	
 	has_allocated_time() (dlkit.assessment.objects.AssessmentSection method)

 	has_assessment() (dlkit.learning.objects.Objective method)

 	has_assessment_begun() (dlkit.services.assessment.Bank method)

 	has_assessment_section_begun() (dlkit.services.assessment.Bank method)

 	has_child_banks() (dlkit.services.assessment.AssessmentManager method)

 	has_child_books() (dlkit.services.commenting.CommentingManager method)

 	has_child_objective_banks() (dlkit.services.learning.LearningManager method)

 	has_child_objectives() (dlkit.services.learning.ObjectiveBank method)

 	has_children() (dlkit.osid.objects.OsidNode method)

 	has_cognitive_process() (dlkit.learning.objects.Objective method)

 	has_data_length() (dlkit.repository.objects.AssetContent method)

 	has_deadline() (dlkit.assessment.objects.AssessmentOffered method)

 	has_duration() (dlkit.assessment.objects.AssessmentOffered method)

 	has_end_reason() (dlkit.osid.objects.OsidRelationship method)

 	has_ended() (dlkit.assessment.objects.AssessmentTaken method)

 	has_knowledge_category() (dlkit.learning.objects.Objective method)

 	has_next() (dlkit.osid.objects.OsidList method)

 	has_next_assessment_section() (dlkit.services.assessment.Bank method)

 	has_next_question() (dlkit.services.assessment.Bank method)

 	has_next_unanswered_question() (dlkit.services.assessment.Bank method)

 	
 	has_parent_banks() (dlkit.services.assessment.AssessmentManager method)

 	has_parent_books() (dlkit.services.commenting.CommentingManager method)

 	has_parent_objective_banks() (dlkit.services.learning.LearningManager method)

 	has_parent_objectives() (dlkit.services.learning.ObjectiveBank method)

 	has_parents() (dlkit.osid.objects.OsidNode method)

 	has_previous_assessment_section() (dlkit.services.assessment.Bank method)

 	has_previous_question() (dlkit.services.assessment.Bank method)

 	has_previous_unanswered_question() (dlkit.services.assessment.Bank method)

 	has_rating() (dlkit.commenting.objects.Comment method)

 	has_record_type() (dlkit.osid.markers.Extensible method)

 	has_rubric() (dlkit.assessment.objects.Assessment method)

 	(dlkit.assessment.objects.AssessmentOffered method)

 	(dlkit.assessment.objects.AssessmentTaken method)

 	has_rule() (dlkit.osid.objects.OsidRule method)

 	has_start_time() (dlkit.assessment.objects.AssessmentOffered method)

 	has_started() (dlkit.assessment.objects.AssessmentTaken method)

 	has_unanswered_questions() (dlkit.services.assessment.Bank method)

 	has_url() (dlkit.repository.objects.AssetContent method)

 	has_value() (dlkit.osid.metadata.Metadata method)

 	heading_set (dlkit.osid.metadata.Metadata attribute)

 	heading_types (dlkit.osid.metadata.Metadata attribute)

I

 	
 	id_set (dlkit.osid.metadata.Metadata attribute)

 	id_terms (dlkit.osid.queries.OsidIdentifiableQuery attribute)

 	ident (dlkit.osid.managers.OsidProfile attribute)

 	(dlkit.osid.markers.Identifiable attribute)

 	Identifiable (class in dlkit.osid.markers)

 	implements_record_type() (dlkit.osid.records.OsidRecord method)

 	initialize() (dlkit.services.osid.OsidRuntimeManager method), [1]

 	instructions (dlkit.osid.metadata.Metadata attribute)

 	integer_set (dlkit.osid.metadata.Metadata attribute)

 	interpolated (dlkit.osid.objects.OsidCompendiumForm attribute)

 	interpolated_metadata (dlkit.osid.objects.OsidCompendiumForm attribute)

 	interpolated_terms (dlkit.osid.queries.OsidCompendiumQuery attribute)

 	invalid_metadata (dlkit.osid.objects.OsidForm attribute)

 	is_active() (dlkit.osid.markers.Operable method)

 	is_ancestor_of_bank() (dlkit.services.assessment.AssessmentManager method)

 	is_ancestor_of_book() (dlkit.services.commenting.CommentingManager method)

 	is_ancestor_of_objective() (dlkit.services.learning.ObjectiveBank method)

 	is_ancestor_of_objective_bank() (dlkit.services.learning.LearningManager method)

 	is_answer_available() (dlkit.services.assessment.Bank method)

 	is_array() (dlkit.osid.metadata.Metadata method)

 	is_assessment_based_activity() (dlkit.learning.objects.Activity method)

 	is_assessment_over() (dlkit.services.assessment.Bank method)

 	is_assessment_section_complete() (dlkit.services.assessment.Bank method)

 	is_assessment_section_over() (dlkit.services.assessment.Bank method)

 	is_asset_based_activity() (dlkit.learning.objects.Activity method)

 	is_child_of_bank() (dlkit.services.assessment.AssessmentManager method)

 	is_child_of_book() (dlkit.services.commenting.CommentingManager method)

 	is_child_of_objective() (dlkit.services.learning.ObjectiveBank method)

 	is_child_of_objective_bank() (dlkit.services.learning.LearningManager method)

 	is_composition() (dlkit.repository.objects.Asset method)

 	is_copyright_status_known() (dlkit.repository.objects.Asset method)

 	is_course_based_activity() (dlkit.learning.objects.Activity method)

 	is_current() (dlkit.osid.markers.Identifiable method)

 	is_descendant_of_bank() (dlkit.services.assessment.AssessmentManager method)

 	is_descendant_of_book() (dlkit.services.commenting.CommentingManager method)

 	is_descendant_of_objective() (dlkit.services.learning.ObjectiveBank method)

 	is_descendant_of_objective_bank() (dlkit.services.learning.LearningManager method)

 	is_disabled() (dlkit.osid.markers.Operable method)

 	is_effective() (dlkit.osid.markers.Temporal method)

 	is_effective_by_cyclic_event() (dlkit.osid.objects.OsidEnabler method)

 	is_effective_by_event() (dlkit.osid.objects.OsidEnabler method)

 	is_effective_by_schedule() (dlkit.osid.objects.OsidEnabler method)

 	is_effective_for_demographic() (dlkit.osid.objects.OsidEnabler method)

 	is_enabled() (dlkit.osid.markers.Operable method)

 	is_extrapolated() (dlkit.osid.objects.OsidCompendium method)

 	is_for_update() (dlkit.osid.objects.OsidForm method)

 	
 	is_graded() (dlkit.assessment.objects.AssessmentOffered method)

 	(dlkit.assessment.objects.AssessmentTaken method)

 	is_interpolated() (dlkit.osid.objects.OsidCompendium method)

 	is_leaf() (dlkit.osid.objects.OsidNode method)

 	is_linked() (dlkit.osid.metadata.Metadata method)

 	is_objective_required() (dlkit.services.learning.ObjectiveBank method)

 	is_of_genus_type() (dlkit.osid.objects.OsidObject method)

 	is_operational() (dlkit.osid.markers.Operable method)

 	is_parent_of_bank() (dlkit.services.assessment.AssessmentManager method)

 	is_parent_of_book() (dlkit.services.commenting.CommentingManager method)

 	is_parent_of_objective() (dlkit.services.learning.ObjectiveBank method)

 	is_parent_of_objective_bank() (dlkit.services.learning.LearningManager method)

 	is_public_domain() (dlkit.repository.objects.Asset method)

 	is_published() (dlkit.repository.objects.Asset method)

 	is_question_answered() (dlkit.services.assessment.Bank method)

 	is_read_only() (dlkit.osid.metadata.Metadata method)

 	is_required() (dlkit.osid.metadata.Metadata method)

 	is_root() (dlkit.osid.objects.OsidNode method)

 	is_scored() (dlkit.assessment.objects.AssessmentOffered method)

 	(dlkit.assessment.objects.AssessmentTaken method)

 	is_sequestered() (dlkit.osid.markers.Containable method)

 	is_valid() (dlkit.osid.objects.OsidForm method)

 	is_value_known() (dlkit.osid.metadata.Metadata method)

 	Item (class in dlkit.assessment.objects)

 	item (dlkit.assessment.rules.Response attribute)

 	item_id (dlkit.assessment.rules.Response attribute)

 	item_id_terms (dlkit.assessment.queries.AssessmentQuery attribute)

 	(dlkit.assessment.queries.BankQuery attribute)

 	item_query (dlkit.assessment.queries.AssessmentQuery attribute)

 	(dlkit.assessment.queries.BankQuery attribute)

 	(dlkit.services.assessment.Bank attribute)

 	item_record_types (dlkit.services.assessment.AssessmentManager attribute)

 	item_search_record_types (dlkit.services.assessment.AssessmentManager attribute)

 	item_terms (dlkit.assessment.queries.AssessmentQuery attribute)

 	(dlkit.assessment.queries.BankQuery attribute)

 	ItemForm (class in dlkit.assessment.objects)

 	ItemFormRecord (class in dlkit.assessment.records)

 	ItemList (class in dlkit.assessment.objects)

 	ItemQuery (class in dlkit.assessment.queries)

 	ItemQueryRecord (class in dlkit.assessment.records)

 	ItemRecord (class in dlkit.assessment.records)

 	items_sequential (dlkit.assessment.objects.AssessmentOfferedForm attribute)

 	items_sequential_metadata (dlkit.assessment.objects.AssessmentOfferedForm attribute)

 	items_sequential_terms (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	items_shuffled (dlkit.assessment.objects.AssessmentOfferedForm attribute)

 	items_shuffled_metadata (dlkit.assessment.objects.AssessmentOfferedForm attribute)

 	items_shuffled_terms (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

J

 	
 	journal_comment (dlkit.osid.objects.OsidForm attribute)

 	journal_comment_metadata (dlkit.osid.objects.OsidForm attribute)

 	
 	journal_entry_id_terms (dlkit.osid.queries.OsidObjectQuery attribute)

 	journal_entry_query (dlkit.osid.queries.OsidObjectQuery attribute)

 	journal_entry_terms (dlkit.osid.queries.OsidObjectQuery attribute)

K

 	
 	keyword_terms (dlkit.osid.queries.OsidQuery attribute)

 	knowledge_category (dlkit.learning.objects.Objective attribute)

 	(dlkit.learning.objects.ObjectiveForm attribute)

 	knowledge_category_id (dlkit.learning.objects.Objective attribute)

 	
 	knowledge_category_id_terms (dlkit.learning.queries.ObjectiveQuery attribute)

 	knowledge_category_metadata (dlkit.learning.objects.ObjectiveForm attribute)

 	knowledge_category_query (dlkit.learning.queries.ObjectiveQuery attribute)

 	knowledge_category_terms (dlkit.learning.queries.ObjectiveQuery attribute)

L

 	
 	learning_batch_manager (dlkit.services.learning.LearningManager attribute)

 	learning_objective_id_terms (dlkit.assessment.queries.ItemQuery attribute)

 	learning_objective_ids (dlkit.assessment.objects.Item attribute)

 	learning_objective_query (dlkit.assessment.queries.ItemQuery attribute)

 	learning_objective_terms (dlkit.assessment.queries.ItemQuery attribute)

 	learning_objectives (dlkit.assessment.objects.Item attribute)

 	(dlkit.assessment.objects.ItemForm attribute)

 	learning_objectives_metadata (dlkit.assessment.objects.ItemForm attribute)

 	LearningManager (class in dlkit.services.learning)

 	level (dlkit.assessment.objects.Assessment attribute)

 	(dlkit.assessment.objects.AssessmentForm attribute)

 	(dlkit.assessment.objects.AssessmentOffered attribute)

 	(dlkit.assessment.objects.AssessmentOfferedForm attribute)

 	level_id (dlkit.assessment.objects.Assessment attribute)

 	(dlkit.assessment.objects.AssessmentOffered attribute)

 	
 	level_id_terms (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	(dlkit.assessment.queries.AssessmentQuery attribute)

 	level_metadata (dlkit.assessment.objects.AssessmentForm attribute)

 	(dlkit.assessment.objects.AssessmentOfferedForm attribute)

 	level_query (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	(dlkit.assessment.queries.AssessmentQuery attribute)

 	level_terms (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	(dlkit.assessment.queries.AssessmentQuery attribute)

 	license_metadata (dlkit.osid.objects.OsidSourceableForm attribute)

 	license_terms (dlkit.osid.queries.OsidSourceableQuery attribute)

 	locales (dlkit.osid.managers.OsidProfile attribute)

 	(dlkit.osid.objects.OsidForm attribute)

 	location_id_terms (dlkit.repository.queries.AssetQuery attribute)

 	location_query (dlkit.repository.queries.AssetQuery attribute)

 	location_terms (dlkit.repository.queries.AssetQuery attribute)

M

 	
 	match_accessibility_type() (dlkit.repository.queries.AssetContentQuery method)

 	match_active() (dlkit.osid.queries.OsidOperableQuery method)

 	match_activity_id() (dlkit.learning.queries.ObjectiveBankQuery method)

 	(dlkit.learning.queries.ObjectiveQuery method)

 	match_actual_start_time() (dlkit.assessment.queries.AssessmentTakenQuery method)

 	match_ancestor_bank_id() (dlkit.assessment.queries.BankQuery method)

 	match_ancestor_book_id() (dlkit.commenting.queries.BookQuery method)

 	match_ancestor_objective_bank_id() (dlkit.learning.queries.ObjectiveBankQuery method)

 	match_ancestor_objective_id() (dlkit.learning.queries.ObjectiveQuery method)

 	match_ancestor_repository_id() (dlkit.repository.queries.RepositoryQuery method)

 	match_answer_id() (dlkit.assessment.queries.ItemQuery method)

 	match_any() (dlkit.osid.queries.OsidQuery method)

 	match_any_accessibility_type() (dlkit.repository.queries.AssetContentQuery method)

 	match_any_activity() (dlkit.learning.queries.ObjectiveBankQuery method)

 	(dlkit.learning.queries.ObjectiveQuery method)

 	match_any_actual_start_time() (dlkit.assessment.queries.AssessmentTakenQuery method)

 	match_any_ancestor_bank() (dlkit.assessment.queries.BankQuery method)

 	match_any_ancestor_book() (dlkit.commenting.queries.BookQuery method)

 	match_any_ancestor_objective() (dlkit.learning.queries.ObjectiveQuery method)

 	match_any_ancestor_objective_bank() (dlkit.learning.queries.ObjectiveBankQuery method)

 	match_any_ancestor_repository() (dlkit.repository.queries.RepositoryQuery method)

 	match_any_answer() (dlkit.assessment.queries.ItemQuery method)

 	match_any_assessment() (dlkit.assessment.queries.BankQuery method)

 	(dlkit.assessment.queries.ItemQuery method)

 	(dlkit.learning.queries.ActivityQuery method)

 	(dlkit.learning.queries.ObjectiveQuery method)

 	match_any_assessment_offered() (dlkit.assessment.queries.AssessmentQuery method)

 	(dlkit.assessment.queries.BankQuery method)

 	match_any_assessment_taken() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	(dlkit.assessment.queries.AssessmentQuery method)

 	match_any_asset() (dlkit.learning.queries.ActivityQuery method)

 	(dlkit.repository.queries.RepositoryQuery method)

 	match_any_asset_content() (dlkit.repository.queries.AssetQuery method)

 	match_any_branding() (dlkit.osid.queries.OsidSourceableQuery method)

 	match_any_cognitive_process() (dlkit.learning.queries.ObjectiveQuery method)

 	match_any_comment() (dlkit.commenting.queries.BookQuery method)

 	(dlkit.osid.queries.OsidObjectQuery method)

 	match_any_completion_time() (dlkit.assessment.queries.AssessmentTakenQuery method)

 	match_any_composition() (dlkit.repository.queries.AssetQuery method)

 	(dlkit.repository.queries.RepositoryQuery method)

 	match_any_copyright() (dlkit.repository.queries.AssetQuery method)

 	match_any_copyright_registration() (dlkit.repository.queries.AssetQuery method)

 	match_any_course() (dlkit.learning.queries.ActivityQuery method)

 	match_any_created_date() (dlkit.repository.queries.AssetQuery method)

 	match_any_credit() (dlkit.osid.queries.OsidObjectQuery method)

 	match_any_cyclic_event() (dlkit.osid.queries.OsidEnablerQuery method)

 	match_any_data() (dlkit.repository.queries.AssetContentQuery method)

 	match_any_data_length() (dlkit.repository.queries.AssetContentQuery method)

 	match_any_deadline() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	match_any_demographic() (dlkit.osid.queries.OsidEnablerQuery method)

 	match_any_dependent_objective() (dlkit.learning.queries.ObjectiveQuery method)

 	match_any_descendant_bank() (dlkit.assessment.queries.BankQuery method)

 	match_any_descendant_book() (dlkit.commenting.queries.BookQuery method)

 	match_any_descendant_objective() (dlkit.learning.queries.ObjectiveQuery method)

 	match_any_descendant_objective_bank() (dlkit.learning.queries.ObjectiveBankQuery method)

 	match_any_descendant_repository() (dlkit.repository.queries.RepositoryQuery method)

 	match_any_description() (dlkit.osid.queries.OsidObjectQuery method)

 	match_any_display_name() (dlkit.osid.queries.OsidObjectQuery method)

 	match_any_duration() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	match_any_end_date() (dlkit.osid.queries.OsidCompendiumQuery method)

 	(dlkit.osid.queries.OsidTemporalQuery method)

 	match_any_end_reason() (dlkit.osid.queries.OsidRelationshipQuery method)

 	match_any_equivalent_objective() (dlkit.learning.queries.ObjectiveQuery method)

 	match_any_event() (dlkit.osid.queries.OsidEnablerQuery method)

 	match_any_feedback() (dlkit.assessment.queries.AssessmentTakenQuery method)

 	match_any_genus_type() (dlkit.osid.queries.OsidObjectQuery method)

 	match_any_grade() (dlkit.assessment.queries.AssessmentTakenQuery method)

 	match_any_grade_system() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	match_any_item() (dlkit.assessment.queries.AssessmentQuery method)

 	(dlkit.assessment.queries.BankQuery method)

 	match_any_journal_entry() (dlkit.osid.queries.OsidObjectQuery method)

 	match_any_knowledge_category() (dlkit.learning.queries.ObjectiveQuery method)

 	match_any_learning_objective() (dlkit.assessment.queries.ItemQuery method)

 	match_any_level() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	(dlkit.assessment.queries.AssessmentQuery method)

 	match_any_license() (dlkit.osid.queries.OsidSourceableQuery method)

 	match_any_location() (dlkit.repository.queries.AssetQuery method)

 	match_any_objective() (dlkit.learning.queries.ObjectiveBankQuery method)

 	match_any_principal_credit_string() (dlkit.repository.queries.AssetQuery method)

 	match_any_provider() (dlkit.osid.queries.OsidSourceableQuery method)

 	match_any_public_domain() (dlkit.repository.queries.AssetQuery method)

 	match_any_published_date() (dlkit.repository.queries.AssetQuery method)

 	match_any_question() (dlkit.assessment.queries.ItemQuery method)

 	match_any_rating() (dlkit.commenting.queries.CommentQuery method)

 	match_any_record() (dlkit.osid.queries.OsidExtensibleQuery method)

 	match_any_relationship() (dlkit.osid.queries.OsidObjectQuery method)

 	match_any_requisite_objective() (dlkit.learning.queries.ObjectiveQuery method)

 	match_any_rubric() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	(dlkit.assessment.queries.AssessmentQuery method)

 	(dlkit.assessment.queries.AssessmentTakenQuery method)

 	match_any_rule() (dlkit.osid.queries.OsidRuleQuery method)

 	match_any_schedule() (dlkit.osid.queries.OsidEnablerQuery method)

 	match_any_score() (dlkit.assessment.queries.AssessmentTakenQuery method)

 	match_any_score_system() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	(dlkit.assessment.queries.AssessmentTakenQuery method)

 	match_any_source() (dlkit.repository.queries.AssetQuery method)

 	match_any_spatial_coverage() (dlkit.repository.queries.AssetQuery method)

 	match_any_start_date() (dlkit.osid.queries.OsidCompendiumQuery method)

 	(dlkit.osid.queries.OsidTemporalQuery method)

 	match_any_start_time() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	match_any_state() (dlkit.osid.queries.OsidObjectQuery method)

 	match_any_statistic() (dlkit.osid.queries.OsidObjectQuery method)

 	match_any_subject() (dlkit.osid.queries.OsidObjectQuery method)

 	match_any_temporal_coverage() (dlkit.repository.queries.AssetQuery method)

 	match_any_text() (dlkit.commenting.queries.CommentQuery method)

 	match_any_title() (dlkit.repository.queries.AssetQuery method)

 	match_any_url() (dlkit.repository.queries.AssetContentQuery method)

 	match_assessment_id() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	(dlkit.assessment.queries.BankQuery method)

 	(dlkit.assessment.queries.ItemQuery method)

 	(dlkit.learning.queries.ActivityQuery method)

 	(dlkit.learning.queries.ObjectiveQuery method)

 	match_assessment_offered_id() (dlkit.assessment.queries.AssessmentQuery method)

 	(dlkit.assessment.queries.AssessmentTakenQuery method)

 	(dlkit.assessment.queries.BankQuery method)

 	match_assessment_taken_id() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	(dlkit.assessment.queries.AssessmentQuery method)

 	match_asset_content_id() (dlkit.repository.queries.AssetQuery method)

 	match_asset_id() (dlkit.learning.queries.ActivityQuery method)

 	(dlkit.repository.queries.RepositoryQuery method)

 	match_bank_id() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	(dlkit.assessment.queries.AssessmentQuery method)

 	(dlkit.assessment.queries.AssessmentTakenQuery method)

 	(dlkit.assessment.queries.ItemQuery method)

 	match_book_id() (dlkit.commenting.queries.CommentQuery method)

 	match_branding_id() (dlkit.osid.queries.OsidSourceableQuery method)

 	match_cognitive_process_id() (dlkit.learning.queries.ObjectiveQuery method)

 	
 	match_comment_id() (dlkit.commenting.queries.BookQuery method)

 	(dlkit.osid.queries.OsidObjectQuery method)

 	match_commenting_agent_id() (dlkit.commenting.queries.CommentQuery method)

 	match_commentor_id() (dlkit.commenting.queries.CommentQuery method)

 	match_completion_time() (dlkit.assessment.queries.AssessmentTakenQuery method)

 	match_composition_id() (dlkit.repository.queries.AssetQuery method)

 	(dlkit.repository.queries.RepositoryQuery method)

 	match_copyright() (dlkit.repository.queries.AssetQuery method)

 	match_copyright_registration() (dlkit.repository.queries.AssetQuery method)

 	match_course_id() (dlkit.learning.queries.ActivityQuery method)

 	match_created_date() (dlkit.repository.queries.AssetQuery method)

 	match_credit_id() (dlkit.osid.queries.OsidObjectQuery method)

 	match_cyclic_event_id() (dlkit.osid.queries.OsidEnablerQuery method)

 	match_data() (dlkit.repository.queries.AssetContentQuery method)

 	match_data_length() (dlkit.repository.queries.AssetContentQuery method)

 	match_date() (dlkit.osid.queries.OsidTemporalQuery method)

 	match_deadline() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	match_demographic_id() (dlkit.osid.queries.OsidEnablerQuery method)

 	match_dependent_objective_id() (dlkit.learning.queries.ObjectiveQuery method)

 	match_descendant_bank_id() (dlkit.assessment.queries.BankQuery method)

 	match_descendant_book_id() (dlkit.commenting.queries.BookQuery method)

 	match_descendant_objective_bank_id() (dlkit.learning.queries.ObjectiveBankQuery method)

 	match_descendant_objective_id() (dlkit.learning.queries.ObjectiveQuery method)

 	match_descendant_repository_id() (dlkit.repository.queries.RepositoryQuery method)

 	match_description() (dlkit.osid.queries.OsidObjectQuery method)

 	match_disabled() (dlkit.osid.queries.OsidOperableQuery method)

 	match_display_name() (dlkit.osid.queries.OsidObjectQuery method)

 	match_distribute_alterations() (dlkit.repository.queries.AssetQuery method)

 	match_distribute_compositions() (dlkit.repository.queries.AssetQuery method)

 	match_distribute_verbatim() (dlkit.repository.queries.AssetQuery method)

 	match_duration() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	match_effective() (dlkit.osid.queries.OsidTemporalQuery method)

 	match_enabled() (dlkit.osid.queries.OsidOperableQuery method)

 	match_end_date() (dlkit.osid.queries.OsidCompendiumQuery method)

 	(dlkit.osid.queries.OsidTemporalQuery method)

 	match_end_reason_id() (dlkit.osid.queries.OsidRelationshipQuery method)

 	match_equivalent_objective_id() (dlkit.learning.queries.ObjectiveQuery method)

 	match_event_id() (dlkit.osid.queries.OsidEnablerQuery method)

 	match_extrapolated() (dlkit.osid.queries.OsidCompendiumQuery method)

 	match_feedback() (dlkit.assessment.queries.AssessmentTakenQuery method)

 	match_genus_type() (dlkit.osid.queries.OsidObjectQuery method)

 	match_grade_id() (dlkit.assessment.queries.AssessmentTakenQuery method)

 	match_grade_system_id() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	match_id() (dlkit.osid.queries.OsidIdentifiableQuery method)

 	match_interpolated() (dlkit.osid.queries.OsidCompendiumQuery method)

 	match_item_id() (dlkit.assessment.queries.AssessmentQuery method)

 	(dlkit.assessment.queries.BankQuery method)

 	match_items_sequential() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	match_items_shuffled() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	match_journal_entry_id() (dlkit.osid.queries.OsidObjectQuery method)

 	match_keyword() (dlkit.osid.queries.OsidQuery method)

 	match_knowledge_category_id() (dlkit.learning.queries.ObjectiveQuery method)

 	match_learning_objective_id() (dlkit.assessment.queries.ItemQuery method)

 	match_level_id() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	(dlkit.assessment.queries.AssessmentQuery method)

 	match_license() (dlkit.osid.queries.OsidSourceableQuery method)

 	match_location_id() (dlkit.repository.queries.AssetQuery method)

 	match_objective_bank_id() (dlkit.learning.queries.ActivityQuery method)

 	(dlkit.learning.queries.ObjectiveQuery method)

 	match_objective_id() (dlkit.learning.queries.ActivityQuery method)

 	(dlkit.learning.queries.ObjectiveBankQuery method)

 	match_operational() (dlkit.osid.queries.OsidOperableQuery method)

 	match_parent_genus_type() (dlkit.osid.queries.OsidObjectQuery method)

 	match_principal_credit_string() (dlkit.repository.queries.AssetQuery method)

 	match_provider_id() (dlkit.osid.queries.OsidSourceableQuery method)

 	match_public_domain() (dlkit.repository.queries.AssetQuery method)

 	match_published() (dlkit.repository.queries.AssetQuery method)

 	match_published_date() (dlkit.repository.queries.AssetQuery method)

 	match_question_id() (dlkit.assessment.queries.ItemQuery method)

 	match_rating_id() (dlkit.commenting.queries.CommentQuery method)

 	match_record_type() (dlkit.osid.queries.OsidExtensibleQuery method)

 	match_reference_id() (dlkit.commenting.queries.CommentQuery method)

 	match_relationship_id() (dlkit.osid.queries.OsidObjectQuery method)

 	match_relationship_peer_id() (dlkit.osid.queries.OsidObjectQuery method)

 	match_repository_id() (dlkit.repository.queries.AssetQuery method)

 	match_requisite_objective_id() (dlkit.learning.queries.ObjectiveQuery method)

 	match_rubric_id() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	(dlkit.assessment.queries.AssessmentQuery method)

 	(dlkit.assessment.queries.AssessmentTakenQuery method)

 	match_rule_id() (dlkit.osid.queries.OsidRuleQuery method)

 	match_schedule_id() (dlkit.osid.queries.OsidEnablerQuery method)

 	match_score() (dlkit.assessment.queries.AssessmentTakenQuery method)

 	match_score_system_id() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	(dlkit.assessment.queries.AssessmentTakenQuery method)

 	match_sequestered() (dlkit.osid.queries.OsidContainableQuery method)

 	match_source_id() (dlkit.repository.queries.AssetQuery method)

 	match_spatial_coverage() (dlkit.repository.queries.AssetQuery method)

 	match_spatial_coverage_overlap() (dlkit.repository.queries.AssetQuery method)

 	match_start_date() (dlkit.osid.queries.OsidCompendiumQuery method)

 	(dlkit.osid.queries.OsidTemporalQuery method)

 	match_start_time() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	match_state_id() (dlkit.osid.queries.OsidObjectQuery method)

 	match_subject_id() (dlkit.osid.queries.OsidObjectQuery method)

 	match_taker_id() (dlkit.assessment.queries.AssessmentTakenQuery method)

 	match_taking_agent_id() (dlkit.assessment.queries.AssessmentTakenQuery method)

 	match_temporal_coverage() (dlkit.repository.queries.AssetQuery method)

 	match_text() (dlkit.commenting.queries.CommentQuery method)

 	match_time_spent() (dlkit.assessment.queries.AssessmentTakenQuery method)

 	match_title() (dlkit.repository.queries.AssetQuery method)

 	match_url() (dlkit.repository.queries.AssetContentQuery method)

 	maximum_cardinal (dlkit.osid.metadata.Metadata attribute)

 	maximum_currency (dlkit.osid.metadata.Metadata attribute)

 	maximum_date_time (dlkit.osid.metadata.Metadata attribute)

 	maximum_decimal (dlkit.osid.metadata.Metadata attribute)

 	maximum_distance (dlkit.osid.metadata.Metadata attribute)

 	maximum_duration (dlkit.osid.metadata.Metadata attribute)

 	maximum_elements (dlkit.osid.metadata.Metadata attribute)

 	maximum_integer (dlkit.osid.metadata.Metadata attribute)

 	maximum_speed (dlkit.osid.metadata.Metadata attribute)

 	maximum_string_length (dlkit.osid.metadata.Metadata attribute)

 	maximum_time (dlkit.osid.metadata.Metadata attribute)

 	maximum_version (dlkit.osid.metadata.Metadata attribute)

 	Metadata (class in dlkit.osid.metadata)

 	minimum_cardinal (dlkit.osid.metadata.Metadata attribute)

 	minimum_currency (dlkit.osid.metadata.Metadata attribute)

 	minimum_date_time (dlkit.osid.metadata.Metadata attribute)

 	minimum_decimal (dlkit.osid.metadata.Metadata attribute)

 	minimum_distance (dlkit.osid.metadata.Metadata attribute)

 	minimum_duration (dlkit.osid.metadata.Metadata attribute)

 	minimum_elements (dlkit.osid.metadata.Metadata attribute)

 	minimum_integer (dlkit.osid.metadata.Metadata attribute)

 	minimum_speed (dlkit.osid.metadata.Metadata attribute)

 	minimum_string_length (dlkit.osid.metadata.Metadata attribute)

 	minimum_time (dlkit.osid.metadata.Metadata attribute)

 	minimum_version (dlkit.osid.metadata.Metadata attribute)

 	move_item() (dlkit.services.assessment.Bank method)

 	move_objective_ahead() (dlkit.services.learning.ObjectiveBank method)

 	move_objective_behind() (dlkit.services.learning.ObjectiveBank method)

N

 	
 	next_activity (dlkit.learning.objects.ActivityList attribute)

 	next_answer (dlkit.assessment.objects.AnswerList attribute)

 	next_assessment (dlkit.assessment.objects.AssessmentList attribute)

 	next_assessment_offered (dlkit.assessment.objects.AssessmentOfferedList attribute)

 	next_assessment_section (dlkit.assessment.objects.AssessmentSectionList attribute)

 	next_assessment_taken (dlkit.assessment.objects.AssessmentTakenList attribute)

 	next_asset (dlkit.repository.objects.AssetList attribute)

 	next_asset_content (dlkit.repository.objects.AssetContentList attribute)

 	
 	next_bank (dlkit.assessment.objects.BankList attribute)

 	next_book (dlkit.commenting.objects.BookList attribute)

 	next_comment (dlkit.commenting.objects.CommentList attribute)

 	next_item (dlkit.assessment.objects.ItemList attribute)

 	next_objective (dlkit.learning.objects.ObjectiveList attribute)

 	next_objective_bank (dlkit.learning.objects.ObjectiveBankList attribute)

 	next_question (dlkit.assessment.objects.QuestionList attribute)

 	next_repository (dlkit.repository.objects.RepositoryList attribute)

 	next_response (dlkit.assessment.objects.ResponseList attribute)

O

 	
 	object_set (dlkit.osid.metadata.Metadata attribute)

 	object_types (dlkit.osid.metadata.Metadata attribute)

 	Objective (class in dlkit.learning.objects)

 	objective (dlkit.learning.objects.Activity attribute)

 	objective_bank_hierarchy (dlkit.services.learning.LearningManager attribute), [1]

 	objective_bank_hierarchy_id (dlkit.services.learning.LearningManager attribute), [1]

 	objective_bank_id_terms (dlkit.learning.queries.ActivityQuery attribute)

 	(dlkit.learning.queries.ObjectiveQuery attribute)

 	objective_bank_query (dlkit.learning.queries.ActivityQuery attribute)

 	(dlkit.learning.queries.ObjectiveQuery attribute)

 	objective_bank_record_types (dlkit.services.learning.LearningManager attribute)

 	objective_bank_search_record_types (dlkit.services.learning.LearningManager attribute)

 	objective_bank_terms (dlkit.learning.queries.ActivityQuery attribute)

 	(dlkit.learning.queries.ObjectiveQuery attribute)

 	objective_banks (dlkit.services.learning.LearningManager attribute)

 	objective_hierarchy (dlkit.services.learning.ObjectiveBank attribute), [1], [2]

 	objective_hierarchy_id (dlkit.services.learning.ObjectiveBank attribute), [1], [2]

 	objective_id (dlkit.learning.objects.Activity attribute)

 	objective_id_terms (dlkit.learning.queries.ActivityQuery attribute)

 	(dlkit.learning.queries.ObjectiveBankQuery attribute)

 	objective_query (dlkit.learning.queries.ActivityQuery attribute)

 	(dlkit.learning.queries.ObjectiveBankQuery attribute)

 	objective_record_types (dlkit.services.learning.LearningManager attribute)

 	objective_search_record_types (dlkit.services.learning.LearningManager attribute)

 	objective_terms (dlkit.learning.queries.ActivityQuery attribute)

 	(dlkit.learning.queries.ObjectiveBankQuery attribute)

 	ObjectiveBank (class in dlkit.services.learning)

 	ObjectiveBankForm (class in dlkit.learning.objects)

 	ObjectiveBankFormRecord (class in dlkit.learning.records)

 	ObjectiveBankList (class in dlkit.learning.objects)

 	ObjectiveBankQuery (class in dlkit.learning.queries)

 	ObjectiveBankQueryRecord (class in dlkit.learning.records)

 	ObjectiveBankRecord (class in dlkit.learning.records)

 	ObjectiveForm (class in dlkit.learning.objects)

 	ObjectiveFormRecord (class in dlkit.learning.records)

 	ObjectiveList (class in dlkit.learning.objects)

 	ObjectiveQuery (class in dlkit.learning.queries)

 	ObjectiveQueryRecord (class in dlkit.learning.records)

 	ObjectiveRecord (class in dlkit.learning.records)

 	objectives (dlkit.services.learning.ObjectiveBank attribute)

 	Operable (class in dlkit.osid.markers)

 	operational_terms (dlkit.osid.queries.OsidOperableQuery attribute)

 	order_items() (dlkit.services.assessment.Bank method)

 	OsidAggregateableForm (class in dlkit.osid.objects)

 	OsidAggregateableQuery (class in dlkit.osid.queries)

 	OsidBrowsableForm (class in dlkit.osid.objects)

 	OsidBrowsableQuery (class in dlkit.osid.queries)

 	OsidCapsule (class in dlkit.osid.objects)

 	OsidCapsuleForm (class in dlkit.osid.objects)

 	OsidCapsuleQuery (class in dlkit.osid.queries)

 	OsidCatalog (class in dlkit.osid.objects)

 	OsidCatalogForm (class in dlkit.osid.objects)

 	
 	OsidCatalogQuery (class in dlkit.osid.queries)

 	OsidCompendium (class in dlkit.osid.objects)

 	OsidCompendiumForm (class in dlkit.osid.objects)

 	OsidCompendiumQuery (class in dlkit.osid.queries)

 	OsidCondition (class in dlkit.osid.rules)

 	OsidConstrainer (class in dlkit.osid.objects)

 	OsidConstrainerForm (class in dlkit.osid.objects)

 	OsidConstrainerQuery (class in dlkit.osid.queries)

 	OsidContainableForm (class in dlkit.osid.objects)

 	OsidContainableQuery (class in dlkit.osid.queries)

 	OsidEnabler (class in dlkit.osid.objects)

 	OsidEnablerForm (class in dlkit.osid.objects)

 	OsidEnablerQuery (class in dlkit.osid.queries)

 	OsidExtensibleForm (class in dlkit.osid.objects)

 	OsidExtensibleQuery (class in dlkit.osid.queries)

 	OsidFederateableForm (class in dlkit.osid.objects)

 	OsidFederateableQuery (class in dlkit.osid.queries)

 	OsidForm (class in dlkit.osid.objects)

 	OsidGovernator (class in dlkit.osid.objects)

 	OsidGovernatorForm (class in dlkit.osid.objects)

 	OsidGovernatorQuery (class in dlkit.osid.queries)

 	OsidIdentifiableForm (class in dlkit.osid.objects)

 	OsidIdentifiableQuery (class in dlkit.osid.queries)

 	OsidInput (class in dlkit.osid.rules)

 	OsidList (class in dlkit.osid.objects)

 	OsidNode (class in dlkit.osid.objects)

 	OsidObject (class in dlkit.osid.objects)

 	OsidObjectForm (class in dlkit.osid.objects)

 	OsidObjectQuery (class in dlkit.osid.queries)

 	OsidOperableForm (class in dlkit.osid.objects)

 	OsidOperableQuery (class in dlkit.osid.queries)

 	OsidPrimitive (class in dlkit.osid.markers)

 	OsidProcessor (class in dlkit.osid.objects)

 	OsidProcessorForm (class in dlkit.osid.objects)

 	OsidProcessorQuery (class in dlkit.osid.queries)

 	OsidProfile (class in dlkit.osid.managers)

 	OsidQuery (class in dlkit.osid.queries)

 	OsidRecord (class in dlkit.osid.records)

 	OsidRelationship (class in dlkit.osid.objects)

 	OsidRelationshipForm (class in dlkit.osid.objects)

 	OsidRelationshipQuery (class in dlkit.osid.queries)

 	OsidResult (class in dlkit.osid.rules)

 	OsidRule (class in dlkit.osid.objects)

 	OsidRuleForm (class in dlkit.osid.objects)

 	OsidRuleQuery (class in dlkit.osid.queries)

 	OsidRuntimeManager (class in dlkit.services.osid)

 	OsidSourceableForm (class in dlkit.osid.objects)

 	OsidSourceableQuery (class in dlkit.osid.queries)

 	OsidSubjugateableForm (class in dlkit.osid.objects)

 	OsidSubjugateableQuery (class in dlkit.osid.queries)

 	OsidTemporalForm (class in dlkit.osid.objects)

 	OsidTemporalQuery (class in dlkit.osid.queries)

P

 	
 	parent_genus_type_terms (dlkit.osid.queries.OsidObjectQuery attribute)

 	parent_ids (dlkit.osid.objects.OsidNode attribute)

 	principal_credit_string (dlkit.repository.objects.Asset attribute)

 	(dlkit.repository.objects.AssetForm attribute)

 	principal_credit_string_metadata (dlkit.repository.objects.AssetForm attribute)

 	principal_credit_string_terms (dlkit.repository.queries.AssetQuery attribute)

 	proficiency_record_types (dlkit.services.learning.LearningManager attribute)

 	proficiency_search_record_types (dlkit.services.learning.LearningManager attribute)

 	properties (dlkit.osid.markers.Browsable attribute)

 	provider (dlkit.osid.markers.Sourceable attribute)

 	(dlkit.osid.objects.OsidSourceableForm attribute)

 	provider_id (dlkit.osid.markers.Sourceable attribute)

 	provider_id_terms (dlkit.osid.queries.OsidSourceableQuery attribute)

 	provider_link_ids (dlkit.repository.objects.Asset attribute)

 	provider_links (dlkit.repository.objects.Asset attribute)

 	(dlkit.repository.objects.AssetForm attribute)

 	
 	provider_links_metadata (dlkit.repository.objects.AssetForm attribute)

 	provider_metadata (dlkit.osid.objects.OsidSourceableForm attribute)

 	provider_terms (dlkit.osid.queries.OsidSourceableQuery attribute)

 	proxy_record_types (dlkit.osid.managers.OsidProfile attribute)

 	public_domain (dlkit.repository.objects.AssetForm attribute)

 	public_domain_metadata (dlkit.repository.objects.AssetForm attribute)

 	public_domain_terms (dlkit.repository.queries.AssetQuery attribute)

 	published (dlkit.repository.objects.AssetForm attribute)

 	published_date (dlkit.repository.objects.Asset attribute)

 	(dlkit.repository.objects.AssetForm attribute)

 	published_date_metadata (dlkit.repository.objects.AssetForm attribute)

 	published_date_terms (dlkit.repository.queries.AssetQuery attribute)

 	published_metadata (dlkit.repository.objects.AssetForm attribute)

 	published_terms (dlkit.repository.queries.AssetQuery attribute)

Q

 	
 	Question (class in dlkit.assessment.objects)

 	question (dlkit.assessment.objects.Item attribute)

 	question_id (dlkit.assessment.objects.Item attribute)

 	question_id_terms (dlkit.assessment.queries.ItemQuery attribute)

 	question_query (dlkit.assessment.queries.ItemQuery attribute)

 	question_terms (dlkit.assessment.queries.ItemQuery attribute)

 	
 	QuestionForm (class in dlkit.assessment.objects)

 	QuestionFormRecord (class in dlkit.assessment.records)

 	QuestionList (class in dlkit.assessment.objects)

 	QuestionQuery (class in dlkit.assessment.queries)

 	QuestionQueryRecord (class in dlkit.assessment.records)

 	QuestionRecord (class in dlkit.assessment.records)

R

 	
 	rating (dlkit.commenting.objects.Comment attribute)

 	(dlkit.commenting.objects.CommentForm attribute)

 	rating_id (dlkit.commenting.objects.Comment attribute)

 	rating_id_terms (dlkit.commenting.queries.CommentQuery attribute)

 	rating_metadata (dlkit.commenting.objects.CommentForm attribute)

 	rating_query (dlkit.commenting.queries.CommentQuery attribute)

 	rating_terms (dlkit.commenting.queries.CommentQuery attribute)

 	record_terms (dlkit.osid.queries.OsidExtensibleQuery attribute)

 	record_types (dlkit.osid.markers.Extensible attribute)

 	reference_id (dlkit.commenting.objects.Comment attribute)

 	reference_id_terms (dlkit.commenting.queries.CommentQuery attribute)

 	relationship_id_terms (dlkit.osid.queries.OsidObjectQuery attribute)

 	relationship_peer_id_terms (dlkit.osid.queries.OsidObjectQuery attribute)

 	relationship_query (dlkit.osid.queries.OsidObjectQuery attribute)

 	relationship_terms (dlkit.osid.queries.OsidObjectQuery attribute)

 	release_date (dlkit.osid.managers.OsidProfile attribute)

 	remove_accessibility_type() (dlkit.repository.objects.AssetContentForm method)

 	remove_child_bank() (dlkit.services.assessment.AssessmentManager method)

 	remove_child_banks() (dlkit.services.assessment.AssessmentManager method)

 	remove_child_book() (dlkit.services.commenting.CommentingManager method)

 	remove_child_books() (dlkit.services.commenting.CommentingManager method)

 	remove_child_objective() (dlkit.services.learning.ObjectiveBank method)

 	remove_child_objective_bank() (dlkit.services.learning.LearningManager method)

 	remove_child_objective_banks() (dlkit.services.learning.LearningManager method)

 	remove_child_objectives() (dlkit.services.learning.ObjectiveBank method)

 	remove_item() (dlkit.services.assessment.Bank method)

 	remove_root_bank() (dlkit.services.assessment.AssessmentManager method)

 	remove_root_book() (dlkit.services.commenting.CommentingManager method)

 	remove_root_objective() (dlkit.services.learning.ObjectiveBank method)

 	remove_root_objective_bank() (dlkit.services.learning.LearningManager method)

 	repositories (dlkit.services.repository.RepositoryManager attribute)

 	Repository (class in dlkit.services.repository)

 	repository_batch_manager (dlkit.services.repository.RepositoryManager attribute)

 	repository_id_terms (dlkit.repository.queries.AssetQuery attribute)

 	repository_query (dlkit.repository.queries.AssetQuery attribute)

 	repository_record_types (dlkit.services.repository.RepositoryManager attribute)

 	repository_rules_manager (dlkit.services.repository.RepositoryManager attribute)

 	repository_search_record_types (dlkit.services.repository.RepositoryManager attribute)

 	repository_terms (dlkit.repository.queries.AssetQuery attribute)

 	RepositoryForm (class in dlkit.repository.objects)

 	RepositoryFormRecord (class in dlkit.repository.records)

 	RepositoryList (class in dlkit.repository.objects)

 	RepositoryManager (class in dlkit.services.repository)

 	
 	RepositoryQuery (class in dlkit.repository.queries)

 	RepositoryQueryRecord (class in dlkit.repository.records)

 	RepositoryRecord (class in dlkit.repository.records)

 	required_record_types (dlkit.osid.objects.OsidExtensibleForm attribute)

 	requires_synchronous_responses() (dlkit.services.assessment.Bank method)

 	requires_synchronous_sections() (dlkit.services.assessment.Bank method)

 	requisite_objective_id_terms (dlkit.learning.queries.ObjectiveQuery attribute)

 	requisite_objective_query (dlkit.learning.queries.ObjectiveQuery attribute)

 	requisite_objective_terms (dlkit.learning.queries.ObjectiveQuery attribute)

 	Response (class in dlkit.assessment.rules)

 	ResponseList (class in dlkit.assessment.objects)

 	ResponseRecord (class in dlkit.assessment.records)

 	rollback_service() (dlkit.services.osid.OsidRuntimeManager method), [1]

 	root_bank_ids (dlkit.services.assessment.AssessmentManager attribute)

 	root_banks (dlkit.services.assessment.AssessmentManager attribute)

 	root_book_ids (dlkit.services.commenting.CommentingManager attribute)

 	root_books (dlkit.services.commenting.CommentingManager attribute)

 	root_objective_bank_ids (dlkit.services.learning.LearningManager attribute)

 	root_objective_banks (dlkit.services.learning.LearningManager attribute)

 	root_objective_ids (dlkit.services.learning.ObjectiveBank attribute)

 	root_objectives (dlkit.services.learning.ObjectiveBank attribute)

 	rubric (dlkit.assessment.objects.Assessment attribute)

 	(dlkit.assessment.objects.AssessmentForm attribute)

 	(dlkit.assessment.objects.AssessmentOffered attribute)

 	(dlkit.assessment.objects.AssessmentTaken attribute)

 	rubric_id (dlkit.assessment.objects.Assessment attribute)

 	(dlkit.assessment.objects.AssessmentOffered attribute)

 	(dlkit.assessment.objects.AssessmentTaken attribute)

 	rubric_id_terms (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	(dlkit.assessment.queries.AssessmentQuery attribute)

 	(dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	rubric_metadata (dlkit.assessment.objects.AssessmentForm attribute)

 	rubric_query (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	(dlkit.assessment.queries.AssessmentQuery attribute)

 	(dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	rubric_terms (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	(dlkit.assessment.queries.AssessmentQuery attribute)

 	(dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	rule (dlkit.osid.objects.OsidRule attribute)

 	(dlkit.osid.objects.OsidRuleForm attribute)

 	rule_id (dlkit.osid.objects.OsidRule attribute)

 	rule_id_terms (dlkit.osid.queries.OsidRuleQuery attribute)

 	rule_metadata (dlkit.osid.objects.OsidRuleForm attribute)

 	rule_terms (dlkit.osid.queries.OsidRuleQuery attribute)

S

 	
 	schedule (dlkit.osid.objects.OsidEnabler attribute)

 	(dlkit.osid.objects.OsidEnablerForm attribute)

 	schedule_id (dlkit.osid.objects.OsidEnabler attribute)

 	schedule_id_terms (dlkit.osid.queries.OsidEnablerQuery attribute)

 	schedule_metadata (dlkit.osid.objects.OsidEnablerForm attribute)

 	schedule_terms (dlkit.osid.queries.OsidEnablerQuery attribute)

 	score (dlkit.assessment.objects.AssessmentTaken attribute)

 	score_system (dlkit.assessment.objects.AssessmentOffered attribute)

 	(dlkit.assessment.objects.AssessmentOfferedForm attribute)

 	(dlkit.assessment.objects.AssessmentTaken attribute)

 	score_system_id (dlkit.assessment.objects.AssessmentOffered attribute)

 	(dlkit.assessment.objects.AssessmentTaken attribute)

 	score_system_id_terms (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	(dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	score_system_metadata (dlkit.assessment.objects.AssessmentOfferedForm attribute)

 	score_system_query (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	(dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	score_system_terms (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	(dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	score_terms (dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	sequence_objectives() (dlkit.services.learning.ObjectiveBank method)

 	sequestered (dlkit.osid.objects.OsidContainableForm attribute)

 	sequestered_metadata (dlkit.osid.objects.OsidContainableForm attribute)

 	sequestered_terms (dlkit.osid.queries.OsidContainableQuery attribute)

 	set_locale() (dlkit.osid.objects.OsidForm method)

 	skip() (dlkit.osid.objects.OsidList method)

 	skip_item() (dlkit.services.assessment.Bank method)

 	source (dlkit.repository.objects.Asset attribute)

 	(dlkit.repository.objects.AssetForm attribute)

 	source_id (dlkit.repository.objects.Asset attribute)

 	source_id_terms (dlkit.repository.queries.AssetQuery attribute)

 	source_metadata (dlkit.repository.objects.AssetForm attribute)

 	source_query (dlkit.repository.queries.AssetQuery attribute)

 	source_terms (dlkit.repository.queries.AssetQuery attribute)

 	Sourceable (class in dlkit.osid.markers)

 	spatial_coverage_overlap_terms (dlkit.repository.queries.AssetQuery attribute)

 	spatial_coverage_terms (dlkit.repository.queries.AssetQuery attribute)

 	spatial_unit_record_types (dlkit.osid.metadata.Metadata attribute)

 	(dlkit.services.repository.RepositoryManager attribute)

 	spatial_unit_set (dlkit.osid.metadata.Metadata attribute)

 	speed_set (dlkit.osid.metadata.Metadata attribute)

 	start_date (dlkit.osid.markers.Temporal attribute)

 	(dlkit.osid.objects.OsidCompendium attribute)

 	(dlkit.osid.objects.OsidCompendiumForm attribute)

 	(dlkit.osid.objects.OsidTemporalForm attribute)

 	start_date_metadata (dlkit.osid.objects.OsidCompendiumForm attribute)

 	(dlkit.osid.objects.OsidTemporalForm attribute)

 	start_date_terms (dlkit.osid.queries.OsidCompendiumQuery attribute)

 	(dlkit.osid.queries.OsidTemporalQuery attribute)

 	start_time (dlkit.assessment.objects.AssessmentOffered attribute)

 	(dlkit.assessment.objects.AssessmentOfferedForm attribute)

 	start_time_metadata (dlkit.assessment.objects.AssessmentOfferedForm attribute)

 	start_time_terms (dlkit.assessment.queries.AssessmentOfferedQuery attribute)

 	state_id_terms (dlkit.osid.queries.OsidObjectQuery attribute)

 	state_query (dlkit.osid.queries.OsidObjectQuery attribute)

 	state_terms (dlkit.osid.queries.OsidObjectQuery attribute)

 	statistic_query (dlkit.osid.queries.OsidObjectQuery attribute)

 	statistic_terms (dlkit.osid.queries.OsidObjectQuery attribute)

 	string_format_types (dlkit.osid.metadata.Metadata attribute)

 	string_match_types (dlkit.osid.metadata.Metadata attribute)

 	(dlkit.osid.queries.OsidQuery attribute)

 	string_set (dlkit.osid.metadata.Metadata attribute)

 	subject_id_terms (dlkit.osid.queries.OsidObjectQuery attribute)

 	subject_query (dlkit.osid.queries.OsidObjectQuery attribute)

 	subject_relevancy_query (dlkit.osid.queries.OsidObjectQuery attribute)

 	subject_relevancy_terms (dlkit.osid.queries.OsidObjectQuery attribute)

 	subject_terms (dlkit.osid.queries.OsidObjectQuery attribute)

 	Subjugateable (class in dlkit.osid.markers)

 	submit_response() (dlkit.services.assessment.Bank method)

 	Suppliable (class in dlkit.osid.markers)

 	supports_activity_admin() (dlkit.services.learning.LearningManager method)

 	supports_activity_lookup() (dlkit.services.learning.LearningManager method)

 	supports_activity_query() (dlkit.learning.queries.ObjectiveBankQuery method)

 	(dlkit.learning.queries.ObjectiveQuery method)

 	supports_ancestor_bank_query() (dlkit.assessment.queries.BankQuery method)

 	supports_ancestor_book_query() (dlkit.commenting.queries.BookQuery method)

 	supports_ancestor_objective_bank_query() (dlkit.learning.queries.ObjectiveBankQuery method)

 	supports_ancestor_objective_query() (dlkit.learning.queries.ObjectiveQuery method)

 	supports_ancestor_repository_query() (dlkit.repository.queries.RepositoryQuery method)

 	supports_answer_query() (dlkit.assessment.queries.ItemQuery method)

 	supports_assessment() (dlkit.services.assessment.AssessmentManager method)

 	supports_assessment_admin() (dlkit.services.assessment.AssessmentManager method)

 	supports_assessment_basic_authoring() (dlkit.services.assessment.AssessmentManager method)

 	supports_assessment_lookup() (dlkit.services.assessment.AssessmentManager method)

 	supports_assessment_offered_admin() (dlkit.services.assessment.AssessmentManager method)

 	supports_assessment_offered_lookup() (dlkit.services.assessment.AssessmentManager method)

 	supports_assessment_offered_query() (dlkit.assessment.queries.AssessmentQuery method)

 	(dlkit.assessment.queries.AssessmentTakenQuery method)

 	(dlkit.assessment.queries.BankQuery method)

 	(dlkit.services.assessment.AssessmentManager method)

 	supports_assessment_query() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	(dlkit.assessment.queries.BankQuery method)

 	(dlkit.assessment.queries.ItemQuery method)

 	(dlkit.learning.queries.ActivityQuery method)

 	(dlkit.learning.queries.ObjectiveQuery method)

 	(dlkit.services.assessment.AssessmentManager method)

 	supports_assessment_taken_admin() (dlkit.services.assessment.AssessmentManager method)

 	supports_assessment_taken_lookup() (dlkit.services.assessment.AssessmentManager method)

 	supports_assessment_taken_query() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	(dlkit.assessment.queries.AssessmentQuery method)

 	(dlkit.services.assessment.AssessmentManager method)

 	supports_asset_admin() (dlkit.services.repository.RepositoryManager method)

 	supports_asset_content_query() (dlkit.repository.queries.AssetQuery method)

 	supports_asset_lookup() (dlkit.services.repository.RepositoryManager method)

 	supports_asset_query() (dlkit.learning.queries.ActivityQuery method)

 	(dlkit.repository.queries.RepositoryQuery method)

 	(dlkit.services.repository.RepositoryManager method)

 	
 	supports_bank_admin() (dlkit.services.assessment.AssessmentManager method)

 	supports_bank_hierarchy() (dlkit.services.assessment.AssessmentManager method)

 	supports_bank_hierarchy_design() (dlkit.services.assessment.AssessmentManager method)

 	supports_bank_lookup() (dlkit.services.assessment.AssessmentManager method)

 	supports_bank_query() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	(dlkit.assessment.queries.AssessmentQuery method)

 	(dlkit.assessment.queries.AssessmentTakenQuery method)

 	(dlkit.assessment.queries.ItemQuery method)

 	supports_book_admin() (dlkit.services.commenting.CommentingManager method)

 	supports_book_hierarchy() (dlkit.services.commenting.CommentingManager method)

 	supports_book_hierarchy_design() (dlkit.services.commenting.CommentingManager method)

 	supports_book_lookup() (dlkit.services.commenting.CommentingManager method)

 	supports_book_query() (dlkit.commenting.queries.CommentQuery method)

 	supports_branding_query() (dlkit.osid.queries.OsidSourceableQuery method)

 	supports_calendar_type() (dlkit.osid.metadata.Metadata method)

 	supports_cognitive_process_query() (dlkit.learning.queries.ObjectiveQuery method)

 	supports_comment_admin() (dlkit.services.commenting.CommentingManager method)

 	supports_comment_lookup() (dlkit.services.commenting.CommentingManager method)

 	supports_comment_query() (dlkit.commenting.queries.BookQuery method)

 	(dlkit.osid.queries.OsidObjectQuery method)

 	(dlkit.services.commenting.CommentingManager method)

 	supports_commenting_agent_query() (dlkit.commenting.queries.CommentQuery method)

 	supports_commentor_query() (dlkit.commenting.queries.CommentQuery method)

 	supports_composition_query() (dlkit.repository.queries.AssetQuery method)

 	(dlkit.repository.queries.RepositoryQuery method)

 	supports_configuration() (dlkit.services.osid.OsidRuntimeManager method)

 	supports_coordinate_type() (dlkit.osid.metadata.Metadata method)

 	supports_course_query() (dlkit.learning.queries.ActivityQuery method)

 	supports_credit_query() (dlkit.osid.queries.OsidObjectQuery method)

 	supports_currency_type() (dlkit.osid.metadata.Metadata method)

 	supports_cyclic_event_query() (dlkit.osid.queries.OsidEnablerQuery method)

 	supports_demographic_query() (dlkit.osid.queries.OsidEnablerQuery method)

 	supports_depndent_objective_query() (dlkit.learning.queries.ObjectiveQuery method)

 	supports_descendant_bank_query() (dlkit.assessment.queries.BankQuery method)

 	supports_descendant_book_query() (dlkit.commenting.queries.BookQuery method)

 	supports_descendant_objective_bank_query() (dlkit.learning.queries.ObjectiveBankQuery method)

 	supports_descendant_objective_query() (dlkit.learning.queries.ObjectiveQuery method)

 	supports_descendant_repository_query() (dlkit.repository.queries.RepositoryQuery method)

 	supports_end_reason_query() (dlkit.osid.queries.OsidRelationshipQuery method)

 	supports_equivalent_objective_query() (dlkit.learning.queries.ObjectiveQuery method)

 	supports_event_query() (dlkit.osid.queries.OsidEnablerQuery method)

 	supports_grade_query() (dlkit.assessment.queries.AssessmentTakenQuery method)

 	supports_grade_system_query() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	supports_heading_type() (dlkit.osid.metadata.Metadata method)

 	supports_item_admin() (dlkit.services.assessment.AssessmentManager method)

 	supports_item_lookup() (dlkit.services.assessment.AssessmentManager method)

 	supports_item_query() (dlkit.assessment.queries.AssessmentQuery method)

 	(dlkit.assessment.queries.BankQuery method)

 	(dlkit.services.assessment.AssessmentManager method)

 	supports_journal_branching() (dlkit.osid.managers.OsidProfile method)

 	supports_journal_entry_query() (dlkit.osid.queries.OsidObjectQuery method)

 	supports_journal_rollback() (dlkit.osid.managers.OsidProfile method)

 	supports_knowledge_category_query() (dlkit.learning.queries.ObjectiveQuery method)

 	supports_learning_objective_query() (dlkit.assessment.queries.ItemQuery method)

 	supports_level_query() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	(dlkit.assessment.queries.AssessmentQuery method)

 	supports_location_query() (dlkit.repository.queries.AssetQuery method)

 	supports_object_type() (dlkit.osid.metadata.Metadata method)

 	supports_objective_admin() (dlkit.services.learning.LearningManager method)

 	supports_objective_bank_admin() (dlkit.services.learning.LearningManager method)

 	supports_objective_bank_hierarchy() (dlkit.services.learning.LearningManager method)

 	supports_objective_bank_hierarchy_design() (dlkit.services.learning.LearningManager method)

 	supports_objective_bank_lookup() (dlkit.services.learning.LearningManager method)

 	supports_objective_bank_query() (dlkit.learning.queries.ActivityQuery method)

 	(dlkit.learning.queries.ObjectiveQuery method)

 	supports_objective_hierarchy() (dlkit.services.learning.LearningManager method)

 	supports_objective_hierarchy_design() (dlkit.services.learning.LearningManager method)

 	supports_objective_lookup() (dlkit.services.learning.LearningManager method)

 	supports_objective_query() (dlkit.learning.queries.ActivityQuery method)

 	(dlkit.learning.queries.ObjectiveBankQuery method)

 	supports_objective_requisite() (dlkit.services.learning.LearningManager method)

 	supports_objective_requisite_assignment() (dlkit.services.learning.LearningManager method)

 	supports_objective_sequencing() (dlkit.services.learning.LearningManager method)

 	supports_osid_version() (dlkit.osid.managers.OsidProfile method)

 	supports_provider_query() (dlkit.osid.queries.OsidSourceableQuery method)

 	supports_proxy_record_type() (dlkit.osid.managers.OsidProfile method)

 	supports_question_query() (dlkit.assessment.queries.ItemQuery method)

 	supports_rating_query() (dlkit.commenting.queries.CommentQuery method)

 	supports_relationship_query() (dlkit.osid.queries.OsidObjectQuery method)

 	supports_repository_admin() (dlkit.services.repository.RepositoryManager method)

 	supports_repository_lookup() (dlkit.services.repository.RepositoryManager method)

 	supports_repository_query() (dlkit.repository.queries.AssetQuery method)

 	supports_requisite_objective_query() (dlkit.learning.queries.ObjectiveQuery method)

 	supports_rubric_query() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	(dlkit.assessment.queries.AssessmentQuery method)

 	(dlkit.assessment.queries.AssessmentTakenQuery method)

 	supports_rule_query() (dlkit.osid.queries.OsidRuleQuery method)

 	supports_schedule_query() (dlkit.osid.queries.OsidEnablerQuery method)

 	supports_score_system_query() (dlkit.assessment.queries.AssessmentOfferedQuery method)

 	(dlkit.assessment.queries.AssessmentTakenQuery method)

 	supports_source_query() (dlkit.repository.queries.AssetQuery method)

 	supports_spatial_unit_record_type() (dlkit.osid.metadata.Metadata method)

 	supports_state_query() (dlkit.osid.queries.OsidObjectQuery method)

 	supports_statistic_query() (dlkit.osid.queries.OsidObjectQuery method)

 	supports_string_match_type() (dlkit.osid.metadata.Metadata method)

 	(dlkit.osid.queries.OsidQuery method)

 	supports_subject_query() (dlkit.osid.queries.OsidObjectQuery method)

 	supports_subject_relevancy_query() (dlkit.osid.queries.OsidObjectQuery method)

 	supports_taker_query() (dlkit.assessment.queries.AssessmentTakenQuery method)

 	supports_taking_agent_query() (dlkit.assessment.queries.AssessmentTakenQuery method)

 	supports_time_type() (dlkit.osid.metadata.Metadata method)

 	supports_version_type() (dlkit.osid.metadata.Metadata method)

 	syntax (dlkit.osid.metadata.Metadata attribute)

T

 	
 	taker (dlkit.assessment.objects.AssessmentTaken attribute)

 	(dlkit.assessment.objects.AssessmentTakenForm attribute)

 	taker_id (dlkit.assessment.objects.AssessmentTaken attribute)

 	taker_id_terms (dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	taker_metadata (dlkit.assessment.objects.AssessmentTakenForm attribute)

 	taker_query (dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	taker_terms (dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	taking_agent (dlkit.assessment.objects.AssessmentTaken attribute)

 	taking_agent_id (dlkit.assessment.objects.AssessmentTaken attribute)

 	taking_agent_id_terms (dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	taking_agent_query (dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	taking_agent_terms (dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	Temporal (class in dlkit.osid.markers)

 	
 	temporal_coverage_terms (dlkit.repository.queries.AssetQuery attribute)

 	text (dlkit.commenting.objects.Comment attribute)

 	(dlkit.commenting.objects.CommentForm attribute)

 	text_metadata (dlkit.commenting.objects.CommentForm attribute)

 	text_terms (dlkit.commenting.queries.CommentQuery attribute)

 	time_set (dlkit.osid.metadata.Metadata attribute)

 	time_spent (dlkit.assessment.objects.AssessmentTaken attribute)

 	time_spent_terms (dlkit.assessment.queries.AssessmentTakenQuery attribute)

 	time_types (dlkit.osid.metadata.Metadata attribute)

 	title (dlkit.repository.objects.Asset attribute)

 	(dlkit.repository.objects.AssetForm attribute)

 	title_metadata (dlkit.repository.objects.AssetForm attribute)

 	title_terms (dlkit.repository.queries.AssetQuery attribute)

 	type_set (dlkit.osid.metadata.Metadata attribute)

U

 	
 	unassign_equivalent_objective() (dlkit.services.learning.ObjectiveBank method)

 	unassign_objective_requisite() (dlkit.services.learning.ObjectiveBank method)

 	units (dlkit.osid.metadata.Metadata attribute)

 	update_activity() (dlkit.services.learning.ObjectiveBank method)

 	update_answer() (dlkit.services.assessment.Bank method)

 	update_assessment() (dlkit.services.assessment.Bank method)

 	update_assessment_offered() (dlkit.services.assessment.Bank method)

 	update_assessment_taken() (dlkit.services.assessment.Bank method)

 	update_asset() (dlkit.services.repository.Repository method)

 	update_asset_content() (dlkit.services.repository.Repository method)

 	update_bank() (dlkit.services.assessment.AssessmentManager method)

 	update_book() (dlkit.services.commenting.CommentingManager method)

 	update_comment() (dlkit.services.commenting.Book method)

 	update_item() (dlkit.services.assessment.Bank method)

 	update_objective() (dlkit.services.learning.ObjectiveBank method)

 	update_objective_bank() (dlkit.services.learning.LearningManager method)

 	update_question() (dlkit.services.assessment.Bank method)

 	update_repository() (dlkit.services.repository.RepositoryManager method)

 	url (dlkit.repository.objects.AssetContent attribute)

 	(dlkit.repository.objects.AssetContentForm attribute)

 	url_metadata (dlkit.repository.objects.AssetContentForm attribute)

 	url_terms (dlkit.repository.queries.AssetContentQuery attribute)

 	use_any_effective_comment_view() (dlkit.services.commenting.Book method)

 	use_comparative_activity_view() (dlkit.services.learning.ObjectiveBank method)

 	use_comparative_assessment_offered_view() (dlkit.services.assessment.Bank method)

 	use_comparative_assessment_taken_view() (dlkit.services.assessment.Bank method)

 	use_comparative_assessment_view() (dlkit.services.assessment.Bank method)

 	use_comparative_asset_view() (dlkit.services.repository.Repository method)

 	
 	use_comparative_bank_view() (dlkit.services.assessment.AssessmentManager method), [1]

 	use_comparative_book_view() (dlkit.services.commenting.CommentingManager method), [1]

 	use_comparative_comment_view() (dlkit.services.commenting.Book method)

 	use_comparative_item_view() (dlkit.services.assessment.Bank method)

 	use_comparative_objective_bank_view() (dlkit.services.learning.LearningManager method), [1]

 	use_comparative_objective_view() (dlkit.services.learning.ObjectiveBank method), [1], [2]

 	use_comparative_repository_view() (dlkit.services.repository.RepositoryManager method)

 	use_effective_comment_view() (dlkit.services.commenting.Book method)

 	use_federated_bank_view() (dlkit.services.assessment.Bank method), [1], [2], [3], [4], [5], [6], [7]

 	use_federated_book_view() (dlkit.services.commenting.Book method), [1]

 	use_federated_objective_bank_view() (dlkit.services.learning.ObjectiveBank method), [1], [2]

 	use_federated_repository_view() (dlkit.services.repository.Repository method), [1]

 	use_isolated_bank_view() (dlkit.services.assessment.Bank method), [1], [2], [3], [4], [5], [6], [7]

 	use_isolated_book_view() (dlkit.services.commenting.Book method), [1]

 	use_isolated_objective_bank_view() (dlkit.services.learning.ObjectiveBank method), [1], [2]

 	use_isolated_repository_view() (dlkit.services.repository.Repository method), [1]

 	use_plenary_activity_view() (dlkit.services.learning.ObjectiveBank method)

 	use_plenary_assessment_offered_view() (dlkit.services.assessment.Bank method)

 	use_plenary_assessment_taken_view() (dlkit.services.assessment.Bank method)

 	use_plenary_assessment_view() (dlkit.services.assessment.Bank method)

 	use_plenary_asset_view() (dlkit.services.repository.Repository method)

 	use_plenary_bank_view() (dlkit.services.assessment.AssessmentManager method), [1]

 	use_plenary_book_view() (dlkit.services.commenting.CommentingManager method), [1]

 	use_plenary_comment_view() (dlkit.services.commenting.Book method)

 	use_plenary_item_view() (dlkit.services.assessment.Bank method)

 	use_plenary_objective_bank_view() (dlkit.services.learning.LearningManager method), [1]

 	use_plenary_objective_view() (dlkit.services.learning.ObjectiveBank method), [1], [2]

 	use_plenary_repository_view() (dlkit.services.repository.RepositoryManager method)

V

 	
 	validation_messages (dlkit.osid.objects.OsidForm attribute)

 	version (dlkit.osid.managers.OsidProfile attribute)

 	
 	version_set (dlkit.osid.metadata.Metadata attribute)

 	version_types (dlkit.osid.metadata.Metadata attribute)

Welcome to the DLKit documentation!

This documentation for the Digital Learning Toolkit (DLKit), like the toolkit itself,
is still under development. It currently covers only a small handful of the 160 service packages
and 9,000 educational service APIs that have been defined by MIT’s Office of Digital Learning and
its collaborators to date.

The DLKit codebase is generated from the Open Service Interface Definitions (OSIDs),
an extensive and growing suite of interface contract specifications that describe the
integration points among the core services and components that make up modern educational systems.

Note that this documentation is intended for API consumers. However, at the heart of DLKit is an
integration stack that is even more closely aligned with the OSID specifications. This has been
designed to allow third parties to extend the library with alternative or additional implementations
of any of the defined services for the purposes of service integration, technology migration,
service adaptation, etc. Documentation written for service implementers and system integrators,
including implementation notes and compliance information, will be provided elsewhere.

The complete OSID specification can be found at http://osid.org/specifications.

If you are interested in learning more about the DLKit Python libraries documented here,
please contact dlkit-info@mit.edu

Contents:

	Tutorial: DLKit Learning Service Basics
	The Runtime Manager and Proxy Authentication

	Loading the Learning Manager

	Looking up Objective Banks

	OSID Ids

	Looking up Objectives

	Authorization Hints

	The Objective Object

	OSID Types

	Assessment
	Summary

	Service Managers

	Bank

	Objects

	Queries

	Records

	Rules

	Commenting
	Summary

	Service Managers

	Book

	Objects

	Queries

	Records

	Learning
	Summary

	Service Managers

	Objective Bank

	Objects

	Queries

	Records

	Repository
	Summary

	Service Managers

	Repository

	Objects

	Queries

	Records

Indices and tables

	Index

	Module Index

	Search Page

Tutorial: DLKit Learning Service Basics

This tutorial is under development. It focuses on aspects of the Learning service. At the
time of this writing, MIT’s Office of Digital Learning has launched its Python-based OSID
development in support of the MIT Core Concept Catalog (MC3 [http://mc3.mit.edu/]) project starting with the OSID
Learning package definition. As a result, this tutorial uses examples primarily from this
particular service, which deals with managing learning objectives, learning paths and
relationships between learning objectives and educational assets, assessments, etc.

All of the other DLKit Interface Specifications build on most of the
same patterns outlined in this tutorial, beginning with loading a service manager.

Loading the Learning Manager

All consumer applications wishing to use the DLKit Learning service should start by instantiating
the LearningManager:

import dlkit
from dlkit.services.learning import LearningManager
lm = LearningManager()

Everything you need to do within the learning service can now be
accessed through this manager. An OSID Manager is used like a factory, providing all
the other objects necessary for using the service. You should never try to instantiate any
other OSID object directly, even if you know where its class definition resides.

The simplest thing you can do with a manager is to inspect its display_name and description
methods. Note that DLKit always returns user-readable strings as DisplayText
objects. The actual text is available via the get_text() method.
Other DisplayText methods return the LanguageType, ScriptType and
FormatType of the text to be displayed:

print "Learning Manager successfully instantiated:"
print " " + lm.get_display_name().get_text()
print " " + lm.get_description().get_text()
print (" (this description was written using the " +
 lm.get_description().get_language_type().get_display_label().get_text() +
 " language)\n")

Results in something that looks like this:

Learning Manager successfully instantiated:
 MC3 Learning Service
 OSID learning service implementation of the MIT Core Concept Catalog (MC3)
 (this description was written using the English language)

 # Note that the implementation name and description may be different for you.
 # It will depend on which underlying service implementation your dlkit library is
 # configured to point to. More on this later

Alternatively, the Python OSID service interfaces also specify
property attributes for all basic “getter” methods, so the above
could also be written more Pythonically as:

print "Learning Manager successfully instantiated:"
print " " + lm.display_name.text
print " " + lm.description.text
print (" (this description was written using the " +
 lm.description.language_type.display_label.text + " language)\n")

For the remainder of this tutorial we will use the property attributes
wherever available.

Looking up Objective Banks

Managers encapsulate service profile information, allowing a consumer
application to ask questions about which functions are supported in the underlying
service implementations that it manages:

if lm.supports_objective_bank_lookup():
 print "This Learning Manager can be used to lookup ObjectiveBanks"
else:
 print "What a lame Learning Manager. It can't even lookup ObjectiveBanks"

The LearningManager also provides methods for getting ObjectiveBanks.
One of the most useful is get_objective_banks(), which will return an iterator
containing all the banks known to the underlying implementations. This is
also available as a property, so treating objective_banks as an
attribute works here too:

if lm.supports_objective_bank_lookup():
 banks = lm.objective_banks
 for bank in banks:
 print bank.display_name.text
else:
 print "Objective bank lookup is not supported."

This will print a list of the names of all the banks, which can be thought of as catalogs
for organizing learning objectives and other related information. At the time of this writing
the following resulted:

Crosslinks
Chemistry Bridge
i2.002
Python Test Sandbox
x.xxx

Note that the OSIDs specify to first ask whether a functional area is supported
before trying to use it. However, if you wish to adhere to the Pythonic EAFP (easier
to ask forgiveness than permission) programming style, managers will throw an
Unimplemented exception if support is not available:

try:
 banks = lm.objective_banks
except Unimplemented:
 print "Objective bank lookup is not supported."
else:
 for bank in banks:
 print bank.display_name.text

The object returned from the call to get_objective_banks() is an
OsidList object, which as you can see from the example is just a Python iterator.
Like all iterators it is “wasting”, meaning that, unlike a Python list it
will be completely used up and empty after all the elements have been retrieved.

Like any iterator an OsidList object can be cast as a more persistent Python
list, like so:

banks = list(obls.objective_banks)

Which is useful if the consuming application needs to keep it around for a while.
However, when we start dealing with OsidLists from service implementations which
may return very large result sets, or where the underlying data changes often, casting
as a list may not be wise. Developers are encouraged to treat these as
iterators to the extent possible, and refresh from the session as necessary.

You can also inspect the number of available elements in the expected way:

len(obls.objective_banks)
 # or
banks = obls.objective_banks
len(banks)

And walk through the list one-at-a-time, in for statements, or by calling next():

banks = lm.objective_banks
crosslinks_bank = banks.next() # At the time of this writing, Crosslinks was first
chem_bridge_bank = banks.next() # and Chemistry Bridge was second

OSID Ids

To begin working with OSID objects, like ObjectiveBanks it is important to understand
how the OSIDs deal with identity. When an OSID object is asked for its id
an OSID Id object is returned. This is not a ``string``. It is the unique identifier object
for the OSID object. Any requests for getting a specific object by its unique identifier will be
accomplished through passing this Id object back through the service.

Ids are obtained by calling an OSID object’s get_id() method,
which also provides an ident attribute property associated with it for convenience
(id is a reserved word in Python so it is not used)

	OsidObject.ident
	Gets the Id associated with this instance of this OSID object.

So we can try this out:

crosslinks_bank_id = crosslinks_bank.ident
chem_bridge_bank_id = chem_bridge_bank.ident

Ids can be compared for equality:

crosslinks_bank_id == chem_bridge_bank_id
 # should return False

crosslinks_bank_id in [crosslinks_bank_id, chem_bridge_bank_id]
 # should return True

If a consumer wishes to persist the identifier then it should serialize the
returned Id object, using pickle or something similar, so as to
be able to get the object back at a later date.

Once an application has its hands on an Id object it can go ahead and
retrieve the corresponding Osid Object through a Lookup Session:

crosslinks_bank_redux = obls.get_objective_bank(crosslinks_bank_id)

We now have two different objects representing the same Crosslinks bank,
which can be determined by comparing Ids:

crosslinks_bank_redux == crosslinks_bank
 # should be False

crosslinks_bank_redux.ident == crosslinks_bank_id
 # should be True

Looking up Objectives

ObjectiveBanks provide methods for looking up and retrieving learning
Objectives, in bulk, by Id, or by Type. Some of the more useful
methods include:

	ObjectiveBank.can_lookup_objectives()
	Tests if this user can perform Objective lookups.

	ObjectiveBank.objectives
	Gets all Objectives.

	ObjectiveBank.get_objective(objective_id)
	Gets the Objective specified by its Id.

	ObjectiveBank.get_objectives_by_genus_type(...)
	Gets an ObjectiveList corresponding to the given objective genus Type which does not include objectives of genus types derived from the specified Type.

So let’s try to find an Objective in the Crosslinks bank with a display name of
“Definite integral”. (Note, that there are also methods for
querying Objectives by various attributes. More on that later.):

for objective in crosslinks_bank:
 if objective.display_name.text == 'Definite integral':
 def_int_obj = objective

Now we have our hands on an honest-to-goodness learning objective as defined by an
honest-to-goodness professor at MIT!

Authorization Hints

Many service implementations will require authentication and authorization for
security purposes (authn/authz). Authorization checks will be done when the consuming application
actually tries to invoke a method for which authz is required, and if
its found that the currently logged-in user is not authorized, then the implementation
will raise a PermissionDenied error.

However, sometimes its nice to be able to check in advance whether or not the user
is likely to be denied access. This way a consuming application can decide, for
instance, to hide or “gray out” UI widgets for doing un-permitted functions. This
is what the methods like can_lookup_objectives are for. They simply return a
boolean.

The Objective Object

Objectives inherit from OsidObjects (ObjectiveBanks do too, by the way),
which means there are a few methods they share with all other OsidObjects defined by
the specification

	OsidObject.display_name
	Gets the preferred display name associated with this instance of this OSID object appropriate for display to the user.

	OsidObject.description
	Gets the description associated with this instance of this OSID object.

	OsidObject.genus_type
	Gets the genus type of this object.

The display_name and description attributes work exactly like they did for
ObjectiveBanks and both return a Displaytext object that can be interrogated
for its text or the format, language, script of the text to be displayed. We’ll get
to genus_type in a little bit

Additionally Objectives objects can hold some information particular to the kind
of data that they manage:

	Objective.has_assessment()
	Tests if an assessment is associated with this objective.

	Objective.assessment
	Gets the assessment associated with this learning objective.

	Objective.assessment_id
	Gets the assessment Id associated with this learning objective.

	Objective.has_cognitive_process()
	Tests if this objective has a cognitive process type.

	Objective.cognitive_process
	Gets the grade associated with the cognitive process.

	Objective.cognitive_process_id
	Gets the grade Id associated with the cognitive process.

	Objective.has_knowledge_category()
	Tests if this objective has a knowledge dimension.

	Objective.knowledge_category
	Gets the grade associated with the knowledge dimension.

	Objective.knowledge_category_id
	Gets the grade Id associated with the knowledge dimension.

OSID Types

The OSID specification defines Types as a way to indicate additional agreements
between service consumers and service providers. A Type is similar to an Id but
includes other data for display and organization:

	Type.display_name
	Gets the full display name of this Type.

	Type.display_label
	Gets the shorter display label for this Type.

	Type.description
	Gets a description of this Type.

	Type.domain
	Gets the domain.

Types also include identification elements so as to uniquely identify one Type
from another:

	Type.authority
	Gets the authority of this Type.

	Type.namespace
	Gets the namespace of the identifier.

	Type.identifier
	Gets the identifier of this Type.

Consuming applications will often need to persist Types for future use.
Persisting a type reference requires persisting all three of these identification
elements.

For instance the MC3 service implementation supports two different types of
Objectives, which help differentiate between topic type objectives and
learning outcome type objectives. One way to store, say, the topic type for
future programmatic reference might be to put it in a dict:

OBJECTIVE_TOPIC_TYPE = {
 'authority': 'MIT-OEIT',
 'namespace': 'mc3-objective',
 'identifier': 'mc3.learning.topic'
 }

The OSIDs also specify functions for looking up types that are defined
and/or supported, and as one might imagine, there is TypeLookupSession specifically
designed for this purpose. This session, however, is not defined in the learning
service package, it is found in the type package, which therefore requires
a TypeManager be instantiated:

from dlkit.services.type import TypeManager
tm = TypeManager()
...
if tm.supports_type_lookup():
 tls = tm.get_type_lookup_session()

The TypeLookupSession provides a number of ways to get types, two of which are
sufficient to get started:

	TypeLookupSession.types
	

	TypeLookupSession.get_type
	

For kicks, let’s print a list of all the Types supported by the implementation:

for typ in tls.types:
 print typ.display_label.text

For the MC3 implementation this should result in a very long list

Also, we can pass the dict we created earlier to the session to get the actual
Type object representing the three identification elements we persisted:

topic_type = tls.get_type(**OBJECTIVE_TOPIC_TYPE)
print topic_type.display_label.text + ': ' + topic_type.description.text

This should print the string 'Topic: Objective that represents a learning topic'

(More to come)

Records

Osid Record

	
class dlkit.osid.records.OsidRecord

	OsidRecord is a top-level interface for all record objects.

A record is an auxiliary interface that can be retrieved from an
OSID object, query, form or search order that contains method
definitions outside the core OSID specification. An OSID record
interface specification is identified with a Type.

	
implements_record_type(record_type)

	Tests if the given type is implemented by this record.

Other types than that directly indicated by get_type() may
be supported through an inheritance scheme where the given type
specifies a record that is a parent interface of the interface
specified by getType().

	Parameters:	record_type (osid.type.Type) – a type

	Returns:	true if the given record Type is implemented by this record, false otherwise

	Return type:	boolean

	Raise:	NullArgument – record_type is null

Summary

Core Service Interface Definitions
osid version 3.0.0

The Open Service Interface Definitions (OSIDs) is a service-based
architecture to promote software interoperability. The OSIDs are a large
suite of interface contract specifications that describe the integration
points among services and system components for the purpose of creating
choice among a variety of different and independently developed
applications and systems, allowing independent evolution of software
components within a complex system, and federated service providers.

The OSIDs were initially developed in 2001 as part of the MIT Open
Knowledge Initiative Project funded by the Andrew W. Mellon Foundation
to provide an architecture for higher education learning systems. OSID
3K development began in 2006 to redesign the capabilities of the
specifications to apply to a much broader range of service domains and
integration challenges among both small and large-scale enterprise
systems.

The osid package defines the building blocks for the OSIDs which are
defined in packages for their respective services. This package defines
the top-level interfaces used by all the OSIDs as well as specification
metadata and the OSID Runtime interface.

Meta Interfaces and Enumerations

	OSID: an enumeration listing the OSIDs defined in the
specification.

	Syntax: an enumeration listing primitive types

	Metadata: an interface for describing data constraints on a data
element

Interface Behavioral Markers

Interface behavioral markers are used to tag a behavioral pattern of the
interface used to construct other object interfaces.

	OsidPrimitive: marks an OSID interface used as a primitive. OSID
primitives may take the form interfaces if not bound to a language
primitive. Interfaces used as primitives are marked to indicate that
the underlying objects may be constructed by an OSID Consumer and an
OSID Provider must honor any OSID primitive regardless of its
origin.

	Identifiable: Marks an interface identifiable by an OSID Id.

	Extensible: Marks an interface as extensible through
OsidRecords.

	Browsable: Marks an interface as providing Property
inspection for its OsidRecords.

	Suppliable: Marks an interface as accepting data from an OSID
Consumer.

	Temporal: Marks an interface that has a lifetime with begin an
end dates.

	Subjugateable: Mars an interface that is dependent on another
object.

	Aggregateable: Marks an interface that contains other objects
normally related through other services.

	Containable: Marks an interface that contains a recursive
reference to itself.

	Sourceable: Marks an interface as having a provider.

	Federateable: Marks an interface that can be federated using the
OSID Hierarchy pattern.

	Operable: Marks an interface as responsible for performing
operatons or tasks. Operables may be enabled or disabled.

Abstract service Interfaces

	OsidProfile: Defines interoperability methods used by
OsidManagers.

	OsidManager: The entry point into an OSID and provides access to
OsidSessions.

	OsidProxyManager: Another entry point into an OSID providing a
means for proxying data from a middle tier application server to an
underlying OSID Provider.

	OsidSession : A service interface accessible from an
OsidManager that defines a set of methods for an aspect of a
service.

Object-like interfaces are generally defined along lines of
interoperability separating issues of data access from data management
and searching. These interfaces may also implement any of the abstract
behavioral interfaces listed above. The OSIDs do not adhere to a DAO/DTO
model in its service definitions in that there are service methods
defined on the objects (although they can be implemented using DTOs if
desired). For the sake of an outline, we’ll pretend they are data
objects.

	OsidObject: Defines object data. OsidObjects are accessed
from OsidSessions. OsidObjects are part of an interface
hierarchy whose interfaces include the behavioral markers and a
variety of common OsidObjects. All OsidObjects are
Identifiable, Extensible, and have a Type. There are
several variants of OsidObjects that indicate a more precise
behavior.

	OsidObjectQuery: Defines a set of methods to query an OSID for
its OsidObjects . An OsidQuery is accessed from an
OsidSession.

	OsidObjectQueryInspector: Defines a set of methods to examine an
OsidQuery.

	OsidObjectForm: Defines a set of methods to create and update
data. OsidForms are accessed from OsidSessions.

	OsidObjectSearchOrder: Defines a set of methods to order search
results. OsidSearchOrders are accessed from OsidSessions.

Most objects are or are derived from OsidObjects. Some object
interfaces may not implement OsidObejct but instead derive directly
from interface behavioral markers. Other OsidObjects may include
interface behavioral markers to indicate functionality beyond a plain
object. Several categories of OsidObjects have been defined to
cluster behaviors to semantically distinguish their function in the
OSIDs.

	OsidCatalog: At the basic level, a catalog represents a
collection of other OsidObjects. The collection may be physical
or virtual and may be federated to build larger OsidCatalogs
using hierarchy services. OsidCatalogs may serve as a control
point to filter or constrain the OsidObjects that may be visible
or created. Each OsidCatalog may have its own provider identifty
apart from the service provider.

	OsidRelationship: Relates two OsidObjects. The
OsidRelationship represents the edge in a graph that may have
its own relationship type and data. OsidRelationships are
Temporal in that they have a time in which the relationship came
into being and a time when the relationship ends.

	OsidRule: Defines an injection point for logic. An OsidRule
may represent some constraint, evaluation, or execution. While
authoring of OsidRules is outside the scope of the OSIDs, an
OsidRule provides the mean to identify the rule and map it to
certain OsidObjects to effect behavior of a service.

The most basic operations of an OSID center on retrieval, search, create
& update, and notifications on changes to an OsidObject. The more
advanced OSIDs model a system behavior where a variety of implicit
relationships, constraints and rules come into play.

	OsidGovernator: Implies an activity or operation exists in the
OSID Provider acting as an Operable point for a set of rules
governing related OsidObjects. The OsidGovernator represents
an engine of sorts in an OSID Provider and may have its own provider
identity.

	OsidCompendium : OsidObjects which are reports or summaries
based on transactional data managed elsewhere.

Managing data governing rules occurs in a separate set of interfaces
from the effected OsidObjects (and often in a separate package).
This allows for a normalized set of rules managing a small set of
control points in a potentially large service.

	OsidEnabler: A managed control point to enable or disable the
operation or effectiveness of another OsidObject . Enablers
create a dynamic environment where behaviors and relationships can
come and go based on rule evauations.

	OsidConstrainer: A managed control point to configure the
constraints on the behavior of another OsidObject.

	OsidProcessor: A managed control point to configure the behavior
of another OsidObject where some kins of processing is implied.

Other Abstract Interfaces

	OsidSearch: Defines set of methods to manage search options for
performing searches.

	OsidSearchResults: Defines a set of methods to examine search
results.

	OsidReceiver: Defines a set of methods invoked for asynchronous
notification.

	OsidList: Defines a set of methods to sequentially access a set
of objects.

	OsidNode: An interface used by hierarchy nodes.

	OsidCondition: An input or “statement of fact” into an
OsidRule evaluation.

	OsidInput: An input of source data into an OsidRule
processor.

	OsidResult: The output from processing an OsidRule.

	OsidRecord: An interface marker for an extension to another
interface. OsidRecord are negotiated using OSID Types.

	Property: Maps a name to a value. Properties are available in
OSID objects to provide a simplified view of data that may exist
within a typed interface.

	PropertyList: A list of properties.

Runtime

	OsidRuntimeProfile: The OsidProfile for the runtime
OsidManager.

	OsidRuntimeManager: The OSID Runtime service.

Abstract Flow

Generally, these definitions are abstract and not accesed directly. They
are used as building blocks to define interfaces in the OSIDs
themselves. OSIDs derive most of their definitions from a definition in
the osid package. The methods that are defined at this abstract level
versus the methods defined directly in a specific OSID is determined by
the typing in the method signatures. The osid package interfaces are a
means of ensuring consistency of common methods and not designed to
facilitate object polymorphism among different OSIDs. A language binder
may elect to alter the interface hierarchy presented in this
specification and a provider need not parallel these interfaces in their
implementations.

The flow of control through any OSID can be described in terms of these
definitions. An OsidManager or OsidProxyManager is retrieved
from the OsidRuntimeManager for a given service. Both types of
managers share an interface for describing what they support in the
OsidProfile.

OsidSessions are created from the OsidManager. OsidSessions
tend to be organized along clusters of like-functionality. Lookup-
oriented sessions retrieve OsidObjects. Return of multiple
OsidObjects is done via the OsidList. Search-oriented sessions
retrieve OsidObjects through searches provided through the
OsidQuery and OsidSearch interfaces.

Administrative-oriented sessions create and update OsidObjects using
the OsidForm interface. The OsidForm makes available
Metadata to help define its rules for setting and changing various
data elements.

OsidObjects can be organized within OsidCatalogs. An
OsidCatalog is hierarchical and can be traversed through an
OsidNode. An OsidQuery or an OsidSearchOrder may be mapped
to a dynamic OsidCatalog. Such a query may be examined using an
OsidQueryInspector.

A notification session provides a means for subscribing to events, “a
new object has been created”, for example, and these events are received
from an OsidReceiver.

Meta OSID Specification

The OSID Specification framework defines the interace and method
structures as well as the language primitives and errors used throughout
the OSIDs. The OSID Specifications are defined completely in terms of
interfaces and the elements specified in the meta specification.

Language Primitives

Ths meta OSID Specification enumerates the allowable language primitives
that can be used in OSID method signatures. Parameters and returns in
OSID methods may be specified in terms of other OSID interfaces or using
one of these primitives. An OSID Binder translates these language
primitives into an appropriate language primitive counterpart.

An OSID Primitive differs from a language primitive. An OSID Primitive
is an interface used to describe a more complex structure than a simple
language primitive can support. Both OSID Primitives and language
primitives have the same behavior in the OSIDs in that an there is no
service encapsulation present allowing OSID Primitives to be consructed
by an OSID Consumer.

Errors

OSID methods are required to return a value, if specified, or return one
of the errors specified in the method signature. The meta package
defines the set of errors that a method signtaure may use.

Errors should result when the contract of the interface as been violated
or cannot be fulfilled and it is necessary to disrupt the flow of
control for a consumer. Different errors are specified where it is
forseen that a consumer may wish to execute a different action without
violating the encapsulation of internal provider operations. Such
actions do not include debugging or other detailed information which is
the responsibility of the provider to manage. As such, the number of
errors defined across all the interfaces is kept to a minimum and the
context of the error may vary from method to method in accordance with
the spceification.

Errors are categorized to convey the audience to which the error
pertains.

	User Errors: Errors which may be the result of a user operation
intended for the user.

	Operational Errors: Errors which may be the result of a system or
some other problem intended for the user.

	Consumer Contract Errors: Software errors resulting in the use of
the OSIDs by an OSID Consumer intended for the application
programmer. These also include integration problems where the OSID
Consumer bypassed a method to test for support of a service or type.

	Provider Contract Errors: Software errors in the use of an OSID by
an OSID Provider intended for an implementation programmer.

Compliance

OSID methods include a compliance statement indicating whether a method
is required or optional to implement. An optional OSID method is one
that defines an UNIMPLEMENTED error and there is a corresponding method
to test for the existence of an implementation.

OSID 3K Acknowledgements

	Tom Coppeto (Editor & Architect)

	Scott Thorne (Architect)

The authors gratefully acknowledge the following individuals for their
time, wisdom, and contributions in shaping these specifications.

	Adam Franco, Middlebury College

	Jeffrey Merriman, Massachusetts Institute of Technology

	Charles Shubert, Massachusetts Insitute of Technology

	Prof. Marc Alier, Universitat Politècnica de Catalyuna

	Joshua Aresty, Massachusetts Institute of Technology

	Fabrizio Cardinali, Giunti Labs

	Pablo Casado, Universitat Politècnica de Catalyuna

	Alex Chapin, Middlebury College

	Craig Counterman, Massachusetts Institute of Technology

	Francesc Santanach Delisau, Universitat Oberta de Catalyuna

	Prof. Llorenç Valverde Garcia, Universitat Oberta de Catalyuna

	Catherine Iannuzzo, Massachusetts Institute of Technology

	Jeffrey Kahn, Verbena Consulting

	Michael Korcynski, Tufts University

	Anoop Kumar, Tufts University

	Eva de Lera, Universitat Oberta de Catalyuna

	Roberto García Marrodán, Universitat Oberta de Catalyuna

	Andrew McKinney, Massachusetts Institute of Technology

	Scott Morris, Apple

	Mark Norton, Nolaria Consulting

	Mark O’Neill, Dartmouth College

	Prof. Charles Severance, University of Michigan

	Stuart Sim, Sun Microsystems/Common Need

	Colin Smythe, IMS Global Learning Consortium

	George Ward, California State University

	Peter Wilkins, Massachusetts Institute of Technology

	Norman Wright, Massachusetts Institute of Technology

O.K.I. Acknowledgements

OSID 3K is based on the O.K.I. OSIDs developed as part of the MIT Open
Knowledge Initiative (O.K.I) project 2001-2004.

	Vijay Kumar, O.K.I. Principal Investigator, Massachusetts Insitute
of Technology

	Jeffrey Merriman, O.K.I. Project Director, Massachusetts Insitute of
Technology

	Scott Thorne, O.K.I. Chief Architect, Massachusetts Institute of
Technology

	Charles Shubert, O.K.I. Architect, Massachusetts Institute of
Technology

	Lois Brooks, Project Coordinator, Stanford University

	Mark Brown, O.K.I. Project Manager, Massachusetts Institute of
Technology

	Bill Fitzgerald, O.K.I. Finance Manager, Massachusetts Institute of
Technology

	Judson Harward, Educational Systems Architect, Massachusetts
Institute of Technology

	Charles Kerns, Educational Systems Architect, Stanford University

	Jeffrey Kahn, O.K.I. Partner, Verbena Consulting

	Judith Leonard, O.K.I. Project Administrator, Massachusetts
Institute of Technology

	Phil Long, O.K.I. Outreach Coordinator, Massachusetts Institute of
Technology

	Cambridge University, O.K.I. Core Collaborator

	Dartmouth College, O.K.I. Core Collaborator

	Massachusetts Institute of Technology, O.K.I. Core Collaborator

	North Carolina State University, O.K.I. Core Collaborator

	Stanford University, O.K.I. Core Collaborator

	University of Michigan, O.K.I. Core Collaborator

	University of Pennsylvania, O.K.I. Core Collaborator

	University of Wisconsin, Madison, O.K.I. Core Collaborator

Metadata

Metadata

	
class dlkit.osid.metadata.Metadata

	The Metadata interface defines a set of methods describing a the syntax and rules for creating and updating a data element inside an OsidForm.

This interface provides a means to retrieve special restrictions
placed upon data elements such as sizes and ranges that may vary
from provider to provider or from object to object.

	
element_id

	Gets a unique Id for the data element.

	Returns:	an Id

	Return type:	osid.id.Id

	
element_label

	Gets a display label for the data element.

	Returns:	a display label

	Return type:	osid.locale.DisplayText

	
instructions

	Gets instructions for updating this element value.

This is a human readable description of the data element or
property that may include special instructions or caveats to the
end-user above and beyond what this interface provides.

	Returns:	instructions

	Return type:	osid.locale.DisplayText

	
syntax

	Gets the syntax of this data.

	Returns:	an enumeration indicating thetype of value

	Return type:	osid.Syntax

	
is_array()

	Tests if this data element is an array.

	Returns:	true if this data is an array, false if a single element

	Return type:	boolean

	
is_required()

	Tests if this data element is required for creating new objects.

	Returns:	true if this element value is required, false otherwise

	Return type:	boolean

	
is_read_only()

	Tests if this data can be updated.

This may indicate the result of a pre-authorization but is not a
guarantee that an authorization failure will not occur when the
create or update transaction is issued.

	Returns:	true if this data is not updatable, false otherwise

	Return type:	boolean

	
is_linked()

	Tests if this data element is linked to other data in the object.

Updating linked data elements should refresh all metadata and
revalidate object elements.

	Returns:	true if this element is linked, false if updates have no side effect

	Return type:	boolean

	
is_value_known()

	Tests if an existing value is known for this data element.

If it is known that a value does not exist, then this method
returns true.

	Returns:	true if the element value is known, false if the element value is not known

	Return type:	boolean

	
has_value()

	Tests if this data element has a set non-default value.

	Returns:	true if this element value has been set, false otherwise

	Return type:	boolean

	Raise:	IllegalState – is_value_known() is false

	
units

	Gets the units of this data for display purposes (‘lbs’, ‘gills’, ‘furlongs’).

	Returns:	the display units of this data or an empty string if not applicable

	Return type:	osid.locale.DisplayText

	
minimum_elements

	In the case where an array or list of elements is specified in an OsidForm, this specifies the minimum number of elements that must be included.

	Returns:	the minimum elements or 1 if is_array() is false

	Return type:	cardinal

	
maximum_elements

	In the case where an array or list of elements is specified in an OsidForm, this specifies the maximum number of elements that can be specified.

	Returns:	the maximum elements or 1 if is_array() is false

	Return type:	cardinal

	
minimum_cardinal

	Gets the minimum cardinal value.

	Returns:	the minimum cardinal

	Return type:	cardinal

	Raise:	IllegalState – syntax is not a CARDINAL

	
maximum_cardinal

	Gets the maximum cardinal value.

	Returns:	the maximum cardinal

	Return type:	cardinal

	Raise:	IllegalState – syntax is not a CARDINAL

	
cardinal_set

	Gets the set of acceptable cardinal values.

	Returns:	a set of cardinals or an empty array if not restricted

	Return type:	cardinal

	Raise:	IllegalState – syntax is not a CARDINAL

	
default_cardinal_values

	Gets the default cardinal values.

These are the values used if the element value is not provided
or is cleared. If is_array() is false, then this method
returns at most a single value.

	Returns:	the default cardinal values

	Return type:	cardinal

	Raise:	IllegalState – syntax is not a CARDINAL or is_required() is true

	
existing_cardinal_values

	Gets the existing cardinal values.

If has_value() and is_required() are false, then
these values are the default values ``. If ``is_array() is
false, then this method returns at most a single value.

	Returns:	the existing cardinal values

	Return type:	cardinal

	Raise:	IllegalState – syntax is not a CARDINAL or is_value_known() is false

	
coordinate_types

	Gets the set of acceptable coordinate types.

	Returns:	the set of coordinate types

	Return type:	osid.type.Type

	Raise:	IllegalState – syntax is not a COORDINATE or SPATIALUNIT

	
supports_coordinate_type(coordinate_type)

	Tests if the given coordinate type is supported.

	Parameters:	coordinate_type (osid.type.Type) – a coordinate Type

	Returns:	true if the type is supported, false otherwise

	Return type:	boolean

	Raise:	IllegalState – syntax is not a COORDINATE

	Raise:	NullArgument – coordinate_type is null

	
get_axes_for_coordinate_type(coordinate_type)

	Gets the number of axes for a given supported coordinate type.

	Parameters:	coordinate_type (osid.type.Type) – a coordinate Type

	Returns:	the number of axes

	Return type:	cardinal

	Raise:	IllegalState – syntax is not a COORDINATE

	Raise:	NullArgument – coordinate_type is null

	Raise:	Unsupported – supports_coordinate_type(coordinate_type) is false

	
get_minimum_coordinate_values(coordinate_type)

	Gets the minimum coordinate values given supported coordinate type.

	Parameters:	coordinate_type (osid.type.Type) – a coordinate Type

	Returns:	the minimum coordinate values

	Return type:	decimal

	Raise:	IllegalState – syntax is not a COORDINATE

	Raise:	NullArgument – coordinate_type is null

	Raise:	Unsupported – supports_coordinate_type(coordinate_type) is false

	
get_maximum_coordinate_values(coordinate_type)

	Gets the maximum coordinate values given supported coordinate type.

	Parameters:	coordinate_type (osid.type.Type) – a coordinate Type

	Returns:	the maximum coordinate values

	Return type:	decimal

	Raise:	IllegalState – syntax is not a COORDINATE

	Raise:	NullArgument – coordinate_type is null

	Raise:	Unsupported – supports_coordinate_type(coordinate_type) is false

	
coordinate_set

	Gets the set of acceptable coordinate values.

	Returns:	a set of coordinates or an empty array if not restricted

	Return type:	osid.mapping.Coordinate

	Raise:	IllegalState – syntax is not a COORDINATE

	
default_coordinate_values

	Gets the default coordinate values.

These are the values used if the element value is not provided
or is cleared. If is_array() is false, then this method
returns at most a single value.

	Returns:	the default coordinate values

	Return type:	osid.mapping.Coordinate

	Raise:	IllegalState – syntax is not a COORDINATE or is_required() is true

	
existing_coordinate_values

	Gets the existing coordinate values.

If has_value() and is_required() are false, then
these values are the default values ``. If ``is_array() is
false, then this method returns at most a single value.

	Returns:	the existing coordinate values

	Return type:	osid.mapping.Coordinate

	Raise:	IllegalState – syntax is not a COORDINATE or is_value_known() is false

	
currency_types

	Gets the set of acceptable currency types.

	Returns:	the set of currency types

	Return type:	osid.type.Type

	Raise:	IllegalState – syntax is not a CURRENCY

	
supports_currency_type(currency_type)

	Tests if the given currency type is supported.

	Parameters:	currency_type (osid.type.Type) – a currency Type

	Returns:	true if the type is supported, false otherwise

	Return type:	boolean

	Raise:	IllegalState – syntax is not a CURRENCY

	Raise:	NullArgument – currency_type is null

	
minimum_currency

	Gets the minimum currency value.

	Returns:	the minimum currency

	Return type:	osid.financials.Currency

	Raise:	IllegalState – syntax is not a CURRENCY

	
maximum_currency

	Gets the maximum currency value.

	Returns:	the maximum currency

	Return type:	osid.financials.Currency

	Raise:	IllegalState – syntax is not a CURRENCY

	
currency_set

	Gets the set of acceptable currency values.

	Returns:	a set of currencies or an empty array if not restricted

	Return type:	osid.financials.Currency

	Raise:	IllegalState – syntax is not a CURRENCY

	
default_currency_values

	Gets the default currency values.

These are the values used if the element value is not provided
or is cleared. If is_array() is false, then this method
returns at most a single value.

	Returns:	the default currency values

	Return type:	osid.financials.Currency

	Raise:	IllegalState – syntax is not a CURRENCY or is_required() is true

	
existing_currency_values

	Gets the existing currency values.

If has_value() and is_required() are false, then
these values are the default values ``. If ``is_array() is
false, then this method returns at most a single value.

	Returns:	the existing currency values

	Return type:	osid.financials.Currency

	Raise:	IllegalState – syntax is not a CURRENCY or is_value_known() is false

	
date_time_resolution

	Gets the smallest resolution of the date time value.

	Returns:	the resolution

	Return type:	osid.calendaring.DateTimeResolution

	Raise:	IllegalState – syntax is not a DATETIME, DURATION , or TIME

	
calendar_types

	Gets the set of acceptable calendar types.

	Returns:	the set of calendar types

	Return type:	osid.type.Type

	Raise:	IllegalState – syntax is not a DATETIME or DURATION

	
supports_calendar_type(calendar_type)

	Tests if the given calendar type is supported.

	Parameters:	calendar_type (osid.type.Type) – a calendar Type

	Returns:	true if the type is supported, false otherwise

	Return type:	boolean

	Raise:	IllegalState – syntax is not a DATETIME or DURATION

	Raise:	NullArgument – calendar_type is null

	
time_types

	Gets the set of acceptable time types.

	Returns:	a set of time types or an empty array if not restricted

	Return type:	osid.type.Type

	Raise:	IllegalState – syntax is not a DATETIME, DURATION, or TIME

	
supports_time_type(time_type)

	Tests if the given time type is supported.

	Parameters:	time_type (osid.type.Type) – a time Type

	Returns:	true if the type is supported, false otherwise

	Return type:	boolean

	Raise:	IllegalState – syntax is not a DATETIME, DURATION, or TIME

	Raise:	NullArgument – time_type is null

	
minimum_date_time

	Gets the minimum date time value.

	Returns:	the minimum value

	Return type:	osid.calendaring.DateTime

	Raise:	IllegalState – syntax is not a DATETIME

	
maximum_date_time

	Gets the maximum date time value.

	Returns:	the maximum value

	Return type:	osid.calendaring.DateTime

	Raise:	IllegalState – syntax is not a DATETIME

	
date_time_set

	Gets the set of acceptable date time values.

	Returns:	a set of values or an empty array if not restricted

	Return type:	osid.calendaring.DateTime

	Raise:	IllegalState – syntax is not a DATETIME

	
default_date_time_values

	Gets the default date time values.

These are the values used if the element value is not provided
or is cleared. If is_array() is false, then this method
returns at most a single value.

	Returns:	the default date time values

	Return type:	osid.calendaring.DateTime

	Raise:	IllegalState – syntax is not a DATETIME or is_required() is true

	
existing_date_time_values

	Gets the existing date time values.

If has_value() and is_required() are false, then
these values are the default values ``. If ``is_array() is
false, then this method returns at most a single value.

	Returns:	the existing date time values

	Return type:	osid.calendaring.DateTime

	Raise:	IllegalState – syntax is not a DATETIME or is_value_known() is false

	
decimal_scale

	Gets the number of digits to the right of the decimal point.

	Returns:	the scale

	Return type:	cardinal

	Raise:	IllegalState – syntax is not a DECIMAL

	
minimum_decimal

	Gets the minimum decimal value.

	Returns:	the minimum decimal

	Return type:	decimal

	Raise:	IllegalState – syntax is not a DECIMAL

	
maximum_decimal

	Gets the maximum decimal value.

	Returns:	the maximum decimal

	Return type:	decimal

	Raise:	IllegalState – syntax is not a DECIMAL

	
decimal_set

	Gets the set of acceptable decimal values.

	Returns:	a set of decimals or an empty array if not restricted

	Return type:	decimal

	Raise:	IllegalState – syntax is not a DECIMAL

	
default_decimal_values

	Gets the default decimal values.

These are the values used if the element value is not provided
or is cleared. If is_array() is false, then this method
returns at most a single value.

	Returns:	the default decimal values

	Return type:	decimal

	Raise:	IllegalState – syntax is not a DECIMAL or is_required() is true

	
existing_decimal_values

	Gets the existing decimal values.

If has_value() and is_required() are false, then
these values are the default values ``. If ``is_array() is
false, then this method returns at most a single value.

	Returns:	the existing decimal values

	Return type:	decimal

	Raise:	IllegalState – syntax is not a DECIMAL or is_value_known() is false

	
distance_resolution

	Gets the smallest resolution of the distance value.

	Returns:	the resolution

	Return type:	osid.mapping.DistanceResolution

	Raise:	IllegalState – syntax is not a DISTANCE

	
minimum_distance

	Gets the minimum distance value.

	Returns:	the minimum value

	Return type:	osid.mapping.Distance

	Raise:	IllegalState – syntax is not a DISTANCE

	
maximum_distance

	Gets the maximum distance value.

	Returns:	the maximum value

	Return type:	osid.mapping.Distance

	Raise:	IllegalState – syntax is not a DISTANCE

	
distance_set

	Gets the set of acceptable distance values.

	Returns:	a set of values or an empty array if not restricted

	Return type:	osid.mapping.Distance

	Raise:	IllegalState – syntax is not a DISTANCE

	
default_distance_values

	Gets the default distance values.

These are the values used if the element value is not provided
or is cleared. If is_array() is false, then this method
returns at most a single value.

	Returns:	the default distance values

	Return type:	osid.mapping.Distance

	Raise:	IllegalState – syntax is not a DISTANCE or is_required() is true

	
existing_distance_values

	Gets the existing distance values.

If has_value() and is_required() are false, then
these values are the default values ``. If ``is_array() is
false, then this method returns at most a single value.

	Returns:	the existing distance values

	Return type:	osid.mapping.Distance

	Raise:	IllegalState – syntax is not a DISTANCE or is_value_known() is false

	
minimum_duration

	Gets the minimum duration.

	Returns:	the minimum duration

	Return type:	osid.calendaring.Duration

	Raise:	IllegalState – syntax is not a DURATION

	
maximum_duration

	Gets the maximum duration.

	Returns:	the maximum duration

	Return type:	osid.calendaring.Duration

	Raise:	IllegalState – syntax is not a DURATION

	
duration_set

	Gets the set of acceptable duration values.

	Returns:	a set of durations or an empty array if not restricted

	Return type:	osid.calendaring.Duration

	Raise:	IllegalState – syntax is not a DURATION

	
default_duration_values

	Gets the default duration values.

These are the values used if the element value is not provided
or is cleared. If is_array() is false, then this method
returns at most at most a single value.

	Returns:	the default duration values

	Return type:	osid.calendaring.Duration

	Raise:	IllegalState – syntax is not a DURATION or is_required() is true

	
existing_duration_values

	Gets the existing duration values.

If has_value() and is_required() are false, then
these values are the default values ``. If ``is_array() is
false, then this method returns at most a single value.

	Returns:	the existing duration values

	Return type:	osid.calendaring.Duration

	Raise:	IllegalState – syntax is not a DURATION or is_value_known() is false

	
heading_types

	Gets the set of acceptable heading types.

	Returns:	a set of heading types or an empty array if not restricted

	Return type:	osid.type.Type

	Raise:	IllegalState – syntax is not a HEADING

	
supports_heading_type(heading_type)

	Tests if the given heading type is supported.

	Parameters:	heading_type (osid.type.Type) – a heading Type

	Returns:	true if the type is supported, false otherwise

	Return type:	boolean

	Raise:	IllegalState – syntax is not a HEADING

	Raise:	NullArgument – heading_type is null

	
get_axes_for_heading_type(heading_type)

	Gets the number of axes for a given supported heading type.

	Parameters:	heading_type (osid.type.Type) – a heading Type

	Returns:	the number of axes

	Return type:	cardinal

	Raise:	IllegalState – syntax is not a HEADING

	Raise:	NullArgument – heading_type is null

	Raise:	Unsupported – supports_heading_type(heading_type) is false

	
get_minimum_heading_values(heading_type)

	Gets the minimum heading values given supported heading type.

	Parameters:	heading_type (osid.type.Type) – a heading Type

	Returns:	the minimum heading values

	Return type:	decimal

	Raise:	IllegalState – syntax is not a HEADING

	Raise:	NullArgument – heading_type is null

	Raise:	Unsupported – supports_heading_type(heading_type) is false

	
get_maximum_heading_values(heading_type)

	Gets the maximum heading values given supported heading type.

	Parameters:	heading_type (osid.type.Type) – a heading Type

	Returns:	the maximum heading values

	Return type:	decimal

	Raise:	IllegalState – syntax is not a HEADING

	Raise:	NullArgument – heading_type is null

	Raise:	Unsupported – supports_heading_type(heading_type) is false

	
heading_set

	Gets the set of acceptable heading values.

	Returns:	the set of heading

	Return type:	osid.mapping.Heading

	Raise:	IllegalState – syntax is not a HEADING

	
default_heading_values

	Gets the default heading values.

These are the values used if the element value is not provided
or is cleared. If is_array() is false, then this method
returns at most a single value.

	Returns:	the default heading values

	Return type:	osid.mapping.Heading

	Raise:	IllegalState – syntax is not a HEADING or is_required() is true

	
existing_heading_values

	Gets the existing heading values.

If has_value() and is_required() are false, then
these values are the default values ``. If ``is_array() is
false, then this method returns at most a single value.

	Returns:	the existing heading values

	Return type:	osid.mapping.Heading

	Raise:	IllegalState – syntax is not a HEADING or is_value_known() is false

	
id_set

	Gets the set of acceptable Ids.

	Returns:	a set of Ids or an empty array if not restricted

	Return type:	osid.id.Id

	Raise:	IllegalState – syntax is not an ID

	
default_id_values

	Gets the default Id values.

These are the values used if the element value is not provided
or is cleared. If is_array() is false, then this method
returns at most a single value.

	Returns:	the default Id values

	Return type:	osid.id.Id

	Raise:	IllegalState – syntax is not an ID or is_required() is true

	
existing_id_values

	Gets the existing Id values.

If has_value() and is_required() are false, then
these values are the default values ``. If ``is_array() is
false, then this method returns at most a single value.

	Returns:	the existing Id values

	Return type:	osid.id.Id

	Raise:	IllegalState – syntax is not an ID

	
minimum_integer

	Gets the minimum integer value.

	Returns:	the minimum value

	Return type:	integer

	Raise:	IllegalState – syntax is not an INTEGER

	
maximum_integer

	Gets the maximum integer value.

	Returns:	the maximum value

	Return type:	integer

	Raise:	IllegalState – syntax is not an INTEGER

	
integer_set

	Gets the set of acceptable integer values.

	Returns:	a set of values or an empty array if not restricted

	Return type:	integer

	Raise:	IllegalState – syntax is not an INTEGER

	
default_integer_values

	Gets the default integer values.

These are the values used if the element value is not provided
or is cleared. If is_array() is false, then this method
returns at most a single value.

	Returns:	the default integer values

	Return type:	integer

	Raise:	IllegalState – syntax is not an INTEGER or is_required() is true

	
existing_integer_values

	Gets the existing integer values.

If has_value() and is_required() are false, then
these values are the default values ``. If ``is_array() is
false, then this method returns at most a single value.

	Returns:	the existing integer values

	Return type:	integer

	Raise:	IllegalState – syntax is not a INTEGER or isValueKnown() is false

	
object_types

	Gets the set of acceptable Types for an arbitrary object.

	Returns:	a set of Types or an empty array if not restricted

	Return type:	osid.type.Type

	Raise:	IllegalState – syntax is not an OBJECT

	
supports_object_type(object_type)

	Tests if the given object type is supported.

	Parameters:	object_type (osid.type.Type) – an object Type

	Returns:	true if the type is supported, false otherwise

	Return type:	boolean

	Raise:	IllegalState – syntax is not an OBJECT

	Raise:	NullArgument – object_type is null

	
object_set

	Gets the set of acceptable object values.

	Returns:	a set of values or an empty array if not restricted

	Return type:	object

	Raise:	IllegalState – syntax is not an OBJECT

	
default_object_values

	Gets the default object values.

These are the values used if the element value is not provided
or is cleared. If is_array() is false, then this method
returns at most a single value.

	Returns:	the default object values

	Return type:	object

	Raise:	IllegalState – syntax is not an OBJECT or is_required() is true

	
existing_object_values

	Gets the existing object values.

If has_value() and is_required() are false, then
these values are the default values ``. If ``is_array() is
false, then this method returns at most a single value.

	Returns:	the existing object values

	Return type:	object

	Raise:	IllegalState – syntax is not an OBJECT or is_value_known() is false

	
spatial_unit_record_types

	Gets the set of acceptable spatial unit record types.

	Returns:	the set of spatial unit types

	Return type:	osid.type.Type

	Raise:	IllegalState – syntax is not SPATIALUNIT

	
supports_spatial_unit_record_type(spatial_unit_record_type)

	Tests if the given spatial unit record type is supported.

	Parameters:	spatial_unit_record_type (osid.type.Type) – a spatial unit record Type

	Returns:	true if the type is supported, false otherwise

	Return type:	boolean

	Raise:	IllegalState – syntax is not an SPATIALUNIT

	Raise:	NullArgument – spatial_unit_record_type is null

	
spatial_unit_set

	Gets the set of acceptable spatial unit values.

	Returns:	a set of spatial units or an empty array if not restricted

	Return type:	osid.mapping.SpatialUnit

	Raise:	IllegalState – syntax is not a SPATIALUNIT

	
default_spatial_unit_values

	Gets the default spatial unit values.

These are the values used if the element value is not provided
or is cleared. If is_array() is false, then this method
returns at most a single value.

	Returns:	the default spatial unit values

	Return type:	osid.mapping.SpatialUnit

	Raise:	IllegalState – syntax is not a SPATIALUNIT or is_required() is true

	
existing_spatial_unit_values

	Gets the existing spatial unit values.

If has_value() and is_required() are false, then
these values are the default values ``. If ``is_array() is
false, then this method returns at most a single value.

	Returns:	the existing spatial unit values

	Return type:	osid.mapping.SpatialUnit

	Raise:	IllegalState – syntax is not a SPATIALUNIT or is_value_known() is false

	
minimum_speed

	Gets the minimum speed value.

	Returns:	the minimum speed

	Return type:	osid.mapping.Speed

	Raise:	IllegalState – syntax is not a SPEED

	
maximum_speed

	Gets the maximum speed value.

	Returns:	the maximum speed

	Return type:	osid.mapping.Speed

	Raise:	IllegalState – syntax is not a SPEED

	
speed_set

	Gets the set of acceptable speed values.

	Returns:	a set of speeds or an empty array if not restricted

	Return type:	osid.mapping.Speed

	Raise:	IllegalState – syntax is not a SPEED

	
default_speed_values

	Gets the default speed values.

These are the values used if the element value is not provided
or is cleared. If is_array() is false, then this method
returns at most a single value.

	Returns:	the default speed values

	Return type:	osid.mapping.Speed

	Raise:	IllegalState – syntax is not a SPEED or is_required() is true

	
existing_speed_values

	Gets the existing speed values.

If has_value() and is_required() are false, then
these values are the default values ``. If ``is_array() is
false, then this method returns at most a single value.

	Returns:	the existing speed values

	Return type:	osid.mapping.Speed

	Raise:	IllegalState – syntax is not a SPEED or is_value_known() is false

	
minimum_string_length

	Gets the minimum string length.

	Returns:	the minimum string length

	Return type:	cardinal

	Raise:	IllegalState – syntax is not a STRING

	
maximum_string_length

	Gets the maximum string length.

	Returns:	the maximum string length

	Return type:	cardinal

	Raise:	IllegalState – syntax is not a STRING

	
string_match_types

	Gets the set of valid string match types for use in validating a string.

If the string match type indicates a regular expression then
get_string_expression() returns a regular expression.

	Returns:	the set of string match types

	Return type:	osid.type.Type

	Raise:	IllegalState – syntax is not a STRING

	
supports_string_match_type(string_match_type)

	Tests if the given string match type is supported.

	Parameters:	string_match_type (osid.type.Type) – a string match type

	Returns:	true if the given string match type Is supported, false otherwise

	Return type:	boolean

	Raise:	IllegalState – syntax is not a STRING

	Raise:	NullArgument – string_match_type is null

	
get_string_expression(string_match_type)

	Gets the regular expression of an acceptable string for the given string match type.

	Parameters:	string_match_type (osid.type.Type) – a string match type

	Returns:	the regular expression

	Return type:	string

	Raise:	NullArgument – string_match_type is null

	Raise:	IllegalState – syntax is not a STRING

	Raise:	Unsupported – supports_string_match_type(string_match_type) is false

	
string_format_types

	Gets the set of valid string formats.

	Returns:	the set of valid text format types

	Return type:	osid.type.Type

	Raise:	IllegalState – syntax is not a STRING

	
string_set

	Gets the set of acceptable string values.

	Returns:	a set of strings or an empty array if not restricted

	Return type:	string

	Raise:	IllegalState – syntax is not a STRING

	
default_string_values

	Gets the default string values.

These are the values used if the element value is not provided
or is cleared. If is_array() is false, then this method
returns at most a single value.

	Returns:	the default string values

	Return type:	string

	Raise:	IllegalState – syntax is not a STRING or is_required() is true

	
existing_string_values

	Gets the existing string values.

If has_value() and is_required() are false, then
these values are the default values ``. If ``is_array() is
false, then this method returns at most a single value.

	Returns:	the existing string values

	Return type:	string

	Raise:	IllegalState – syntax is not a STRING or is_value_known() is false

	
minimum_time

	Gets the minimum time value.

	Returns:	the minimum time

	Return type:	osid.calendaring.Time

	Raise:	IllegalState – syntax is not a TIME

	
maximum_time

	Gets the maximum time value.

	Returns:	the maximum time

	Return type:	osid.calendaring.Time

	Raise:	IllegalState – syntax is not a TIME

	
time_set

	Gets the set of acceptable time values.

	Returns:	a set of times or an empty array if not restricted

	Return type:	osid.calendaring.Time

	Raise:	IllegalState – syntax is not a TIME

	
default_time_values

	Gets the default time values.

These are the values used if the element value is not provided
or is cleared. If is_array() is false, then this method
returns at most a single value.

	Returns:	the default time values

	Return type:	osid.calendaring.Time

	Raise:	IllegalState – syntax is not a TIME or is_required() is true

	
existing_time_values

	Gets the existing time values.

If has_value() and is_required() are false, then
these values are the default values ``. If ``is_array() is
false, then this method returns at most a single value.

	Returns:	the existing time values

	Return type:	osid.calendaring.Time

	Raise:	IllegalState – syntax is not a TIME or is_value_known() is false

	
type_set

	Gets the set of acceptable Types.

	Returns:	a set of Types or an empty array if not restricted

	Return type:	osid.type.Type

	Raise:	IllegalState – syntax is not a TYPE

	
default_type_values

	Gets the default type values.

These are the values used if the element value is not provided
or is cleared. If is_array() is false, then this method
returns at most a single value.

	Returns:	the default type values

	Return type:	osid.type.Type

	Raise:	IllegalState – syntax is not a TYPE or is_required() is true

	
existing_type_values

	Gets the existing type values.

If has_value() and is_required() are false, then
these values are the default values ``. If ``is_array() is
false, then this method returns at most a single value.

	Returns:	the existing type values

	Return type:	osid.type.Type

	Raise:	IllegalState – syntax is not a TYPE or is_value_known() is false

	
version_types

	Gets the set of acceptable version types.

	Returns:	the set of version types

	Return type:	osid.type.Type

	Raise:	IllegalState – syntax is not a VERSION

	
supports_version_type(version_type)

	Tests if the given version type is supported.

	Parameters:	version_type (osid.type.Type) – a version Type

	Returns:	true if the type is supported, false otherwise

	Return type:	boolean

	Raise:	IllegalState – syntax is not a VERSION

	Raise:	NullArgument – version_type is null

	
minimum_version

	Gets the minumim acceptable Version.

	Returns:	the minumim Version

	Return type:	osid.installation.Version

	Raise:	IllegalState – syntax is not a VERSION

	
maximum_version

	Gets the maximum acceptable Version.

	Returns:	the maximum Version

	Return type:	osid.installation.Version

	Raise:	IllegalState – syntax is not a VERSION

	
version_set

	Gets the set of acceptable Versions.

	Returns:	a set of Versions or an empty array if not restricted

	Return type:	osid.installation.Version

	Raise:	IllegalState – syntax is not a VERSION

	
default_version_values

	Gets the default version values.

These are the values used if the element value is not provided
or is cleared. If is_array() is false, then this method
returns at most a single value.

	Returns:	the default version values

	Return type:	osid.installation.Version

	Raise:	IllegalState – syntax is not a TIME or isValueKnown() is false

	
existing_version_values

	Gets the existing version values.

If has_value() and is_required() are false, then
these values are the default values ``. If ``is_array() is
false, then this method returns at most a single value.

	Returns:	the existing version values

	Return type:	osid.installation.Version

	Raise:	IllegalState – syntax is not a VERSION or is_value_known() is false

Markers

Osid Primitive

	
class dlkit.osid.markers.OsidPrimitive

	A marker interface for an interface that behaves like a language primitive.

Primitive types, such as numbers and strings, do not encapsulate
behaviors supplied by an OSID Provider. More complex primitives are
expressed through interface definitions but are treated in a similar
fashion as a language primitive. OSID Primitives supplied by an OSID
Consumer must be consumable by any OSID Provider.

Identifiable

	
class dlkit.osid.markers.Identifiable

	A marker interface for objects uniquely identified with an OSID Id.

	
ident

	Gets the Id associated with this instance of this OSID object.

Persisting any reference to this object is done by persisting
the Id returned from this method. The Id returned may be
different than the Id used to query this object. In this case,
the new Id should be preferred over the old one for future
queries.

	Returns:	the Id

	Return type:	osid.id.Id

	
is_current()

	Tests to see if the last method invoked retrieved up-to-date data.

Simple retrieval methods do not specify errors as, generally,
the data is retrieved once at the time this object is
instantiated. Some implementations may provide real-time data
though the application may not always care. An implementation
providing a real-time service may fall back to a previous
snapshot in case of error. This method returns false if the data
last retrieved was stale.

	Returns:	true if the last data retrieval was up to date, false otherwise

	Return type:	boolean

Extensible

	
class dlkit.osid.markers.Extensible

	A marker interface for objects that contain OsidRecords.

	
record_types

	Gets the record types available in this object.

A record Type explicitly indicates the specification of an
interface to the record. A record may or may not inherit other
record interfaces through interface inheritance in which case
support of a record type may not be explicit in the returned
list. Interoperability with the typed interface to this object
should be performed through hasRecordType().

	Returns:	the record types available

	Return type:	osid.type.TypeList

	
has_record_type(record_type)

	Tests if this object supports the given record Type.

The given record type may be supported by the object through
interface/type inheritence. This method should be checked before
retrieving the record interface.

	Parameters:	record_type (osid.type.Type) – a type

	Returns:	true if a record of the given record Type is available, false otherwise

	Return type:	boolean

Browsable

	
class dlkit.osid.markers.Browsable

	A marker interface for objects that offer property inspection.

	
properties

	Gets a list of properties.

Properties provide a means for applications to display a
representation of the contents of a record without understanding
its Type specification. Applications needing to examine a
specific property should use the extension interface defined by
its Type.

	Returns:	a list of properties

	Return type:	osid.PropertyList

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – an authorization failure occurred

	
get_properties_by_record_type(record_type)

	Gets a list of properties corresponding to the specified record type.

Properties provide a means for applications to display a
representation of the contents of a record without understanding
its record interface specification. Applications needing to
examine a specific propertyshould use the methods defined by the
record Type. The resulting set includes properties specified
by parents of the record type in the case a record’s
interface extends another.

	Parameters:	record_type (osid.type.Type) – the record type corresponding to the properties set to retrieve

	Returns:	a list of properties

	Return type:	osid.PropertyList

	Raise:	NullArgument – record_type is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – an authorization failure occurred

	Raise:	Unsupported – has_record_type(record_type) is false

Suppliable

	
class dlkit.osid.markers.Suppliable

	A marker interface for OSID Provider-owned objects used to supply input from an OSID Consumer.

Temporal

	
class dlkit.osid.markers.Temporal

	Temporal is used to indicate the object endures for a period of time.

	
is_effective()

	Tests if the current date is within the start end end dates inclusive.

	Returns:	true if this is effective, false otherwise

	Return type:	boolean

	
start_date

	Gets the start date.

	Returns:	the start date

	Return type:	osid.calendaring.DateTime

	
end_date

	Gets the end date.

	Returns:	the end date

	Return type:	osid.calendaring.DateTime

Subjugateable

	
class dlkit.osid.markers.Subjugateable

	A Subjugateable is an OsidObject dependent upon another OsidObject.

A Subjugateable is created in the context of the administering
OsidObject that may not be reassigned.

A Subjugateable always has a fixed Id of it administering
OsidObject.

Aggregateable

	
class dlkit.osid.markers.Aggregateable

	Aggregateable is used for an OsidObject to indicate that some or all of the definition is based on an included set of other OsidObjects which are directly accessible and do not exist outside the context of the parent object.

Aggregateables allow for an OsidObject to stand alone
without knowledge of the originating service.

An Asset is an example of an aggregate by including the
AssetContents. An Asset also contains a provider however in this
case the provider is categorized as a simple data attribute of the
Asset that can be changed by updating the Asset using an
AssetForm. The AssetContent differs in there exists a
explicit mapping to the Asset managed through an OsidSession
but accessible directly within the Asset to enable its
consumption outside the Repository OSID.

This marker has little practicality other than to identify a service
pattern that is neither a data attribute nor a separately accessible
relationship or mapping.

Containable

	
class dlkit.osid.markers.Containable

	A Containable is a kind of aggregate where an OsidObject is defined as a recursive composition of itself directly accessible without knowledge of the originating service.

	
is_sequestered()

	Tests if this Containable is sequestered in that it should not appear outside of its aggregated composition.

	Returns:	true if this containable is sequestered, false if this containable may appear outside its aggregate

	Return type:	boolean

Sourceable

	
class dlkit.osid.markers.Sourceable

	Sourceble is used for OsidObjects where information about a provider is appropriate.

Examples of Sourceables are catalogs, compositions, and
services.

	
provider_id

	Gets the Id of the provider.

	Returns:	the provider Id

	Return type:	osid.id.Id

	
provider

	Gets the Resource representing the provider.

	Returns:	the provider

	Return type:	osid.resource.Resource

	Raise:	OperationFailed – unable to complete request

	
branding_ids

	Gets the branding asset Ids.

	Returns:	a list of asset Ids

	Return type:	osid.id.IdList

	
branding

	Gets a branding, such as an image or logo, expressed using the Asset interface.

	Returns:	a list of assets

	Return type:	osid.repository.AssetList

	Raise:	OperationFailed – unable to complete request

Federateable

	
class dlkit.osid.markers.Federateable

	Federateable is used to indicate an OsidObject can be federated using the OSID Hierarchy pattern.

An OSID federation of OsidObjects is where it is inferred from
the hiererarchy that any OsidObject “includes” its children.

Operable

	
class dlkit.osid.markers.Operable

	Operable is used to indicate an OsidObject performs operations.

The active status indicates if the Operable is on or off. The
active status is determined from the operational status and the
enabling rules.

The operational status indicates the Operable is functioning. This
status is not set administratively but instead refelects suitable
conditions for operation.

Operables may be administratively turned on of off through the
enabled and disabled administrative overrides. If there are no
related OsidEnabler rules, then is_enabled() should be set
to true and is_disabled() set to false for the
Operable to be on and is_enabled() set to false and
is_disabled() set to true for the Operable to be off.
is_enabled() and is_disabled() cannot both be tru e.

If there are related OsidEnabler rules, the active status of at
least one OsidEnabler results in a true value for
isOperational(). This active status can be overridden by setting
is_disabled() to true. If there are no active
OsidEnabler rules, is_operational() is false resulting in an
off Operable unless is_enabled() is true .

For the active status to be completely determined by the
OsidEnablers, both is_enabled() and is_disabled() should
be false where the is_active() status is completely driven
from isOperational().

	
is_active()

	Tests if this operable is active.

is_active() is true if is_operational() is true
and is_disabled() is false, or is_enabled() is
true.

	Returns:	true if this operable is on, false if it is off

	Return type:	boolean

	
is_enabled()

	Tests if this operable is administravely enabled.

Administratively enabling overrides any applied OsidEnabler.
If this method returns true then is_disabled() must
return false.

	Returns:	true if this operable is enabled, false if the active status is determined by other rules

	Return type:	boolean

	
is_disabled()

	Tests if this operable is administravely disabled.

Administratively disabling overrides any applied
OsidEnabler. If this method returns true then
is_enabled() must return false.

	Returns:	true if this operable is disabled, false if the active status is determined by other rules

	Return type:	boolean

	
is_operational()

	Tests if this Operable is operational.

This Operable is operational if any of the applied
OsidEnablers are true.

	Returns:	true if this operable is operational, false otherwise

	Return type:	boolean

Rules

Osid Condition

	
class dlkit.osid.rules.OsidCondition

	Bases: dlkit.osid.markers.Extensible, dlkit.osid.markers.Suppliable

The OsidCondition is used to input conditions into a rule for evaluation.

Osid Input

	
class dlkit.osid.rules.OsidInput

	Bases: dlkit.osid.markers.Extensible, dlkit.osid.markers.Suppliable

The OsidInput is used to input conditions into a rule for processing.

Osid Result

	
class dlkit.osid.rules.OsidResult

	Bases: dlkit.osid.markers.Extensible, dlkit.osid.markers.Browsable

The OsidResult is used to retrieve the result of processing a rule.

Osid

	Summary

	Service Managers
	Osid Runtime Manager

	Osid Manager Methods

	Osid Proxy Manager Methods

	Osid Runtime Profile Methods

	Managers
	Osid Profile

	Objects
	Osid Object

	Osid Relationship

	Osid Catalog

	Osid Rule

	Osid Enabler

	Osid Constrainer

	Osid Processor

	Osid Governator

	Osid Compendium

	Osid Capsule

	Osid Form

	Osid Identifiable Form

	Osid Extensible Form

	Osid Browsable Form

	Osid Temporal Form

	Osid Subjugateable Form

	Osid Aggregateable Form

	Osid Containable Form

	Osid Sourceable Form

	Osid Federateable Form

	Osid Operable Form

	Osid Object Form

	Osid Relationship Form

	Osid Catalog Form

	Osid Rule Form

	Osid Enabler Form

	Osid Constrainer Form

	Osid Processor Form

	Osid Governator Form

	Osid Compendium Form

	Osid Capsule Form

	Osid List

	Osid Node

	Markers
	Osid Primitive

	Identifiable

	Extensible

	Browsable

	Suppliable

	Temporal

	Subjugateable

	Aggregateable

	Containable

	Sourceable

	Federateable

	Operable

	Queries
	Osid Query

	Osid Identifiable Query

	Osid Extensible Query

	Osid Browsable Query

	Osid Temporal Query

	Osid Subjugateable Query

	Osid Aggregateable Query

	Osid Containable Query

	Osid Sourceable Query

	Osid Federateable Query

	Osid Operable Query

	Osid Object Query

	Osid Relationship Query

	Osid Catalog Query

	Osid Rule Query

	Osid Enabler Query

	Osid Constrainer Query

	Osid Processor Query

	Osid Governator Query

	Osid Compendium Query

	Osid Capsule Query

	Metadata
	Metadata

	Records
	Osid Record

	Rules
	Osid Condition

	Osid Input

	Osid Result

Queries

Osid Query

	
class dlkit.osid.queries.OsidQuery

	Bases: dlkit.osid.markers.Suppliable

The OsidQuery is used to assemble search queries.

An OsidQuery is available from an OsidQuerySession and
defines methods to match objects. Once the desired parameters are
set, the OsidQuery is given to the designated search method. The
same OsidQuery returned from the session must be used in the
search as the provider may utilize implementation-specific data
wiithin the object.

If multiple data elements are set in this interface, the results
matching all the given data (eg: AND) are returned.

Any match method inside an OsidQuery may be invoked multiple
times. In the case of a match method, each invocation adds an
element to an OR expression. Any of these terms may also be
negated through the match flag.

OsidQuery { OsidQuery.matchDisplayName AND (OsidQuery.matchDescription OR OsidQuery.matchDescription)}

OsidObjects allow for the definition of an additonal records and
the OsidQuery parallels this mechanism. An interface type of an
OsidObject record must also define the corresponding
OsidQuery record which is available through query interfaces.
Multiple requests of these typed interfaces may return the same
underlying object and thus it is only useful to request once.

An OsidQuery may be used to query for set or unset values using
the “match any” methods. A field that has not bee explicitly
assigned may default to a value. If multiple language translations
exist and the query session is placed in a non-default locale,
fields that have not been explicitly assigned in the non-default
locale are considered unset even if the values from the default
locale appear in the objects.

	
string_match_types

	Gets the string matching types supported.

A string match type specifies the syntax of the string query,
such as matching a word or including a wildcard or regular
expression.

	Returns:	a list containing the supported string match types

	Return type:	osid.type.TypeList

	
supports_string_match_type(string_match_type)

	Tests if the given string matching type is supported.

	Parameters:	string_match_type (osid.type.Type) – a Type indicating a string match type

	Returns:	true if the given Type is supported, false otherwise

	Return type:	boolean

	Raise:	NullArgument – string_match_type is null

	
match_keyword(keyword, string_match_type, match)

	Adds a keyword to match.

Multiple keywords can be added to perform a boolean OR among
them. A keyword may be applied to any of the elements defined in
this object such as the display name, description or any method
defined in an interface implemented by this object.

	Parameters:	
	keyword (string) – keyword to match

	string_match_type (osid.type.Type) – the string match type

	match (boolean) – true for a positive match, false for a negative match

	Raise:	InvalidArgument – keyword is not of string_match_type

	Raise:	NullArgument – keyword or string_match_type is null

	Raise:	Unsupported – supports_string_match_type(string_match_type) is false

	
keyword_terms

	

	
match_any(match)

	Matches any object.

	Parameters:	match (boolean) – true to match any object , false to match no objects

	
any_terms

	

Osid Identifiable Query

	
class dlkit.osid.queries.OsidIdentifiableQuery

	Bases: dlkit.osid.queries.OsidQuery

The OsidIdentiableQuery is used to assemble search queries for Identifiable objects.

An OsidIdentifiableQuery is available from an
OsidQuerySession and defines methods to match objects. Once the
desired parameters are set, the OsidIdentifiableQuery is given
to the designated search method. The same OsidIdentifiableQuery
returned from the session must be used in the search as the provider
may utilize implementation-specific data wiithin the object.

If multiple data elements are set in this interface, the results
matching all the given data (eg: AND) are returned.

	
match_id(id_, match)

	Adds an Id to match.

Multiple Ids can be added to perform a boolean OR among
them.

	Parameters:	
	id (osid.id.Id) – Id to match

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – id is null

	
id_terms

	

Osid Extensible Query

	
class dlkit.osid.queries.OsidExtensibleQuery

	Bases: dlkit.osid.queries.OsidQuery, dlkit.osid.markers.Extensible

The OsidExtensibleQuery is used to assemble search queries for Extensible objects.

An OsidExtensibleQuery is available from an OsidQuerySession
and defines methods to match objects. Once the desired parameters
are set, the OsidExtensibleQuery is given to the designated
search method. The same OsidExtensibleQuery returned from the
session must be used in the search as the provider may utilize
implementation-specific data wiithin the object.

If multiple data elements are set in this interface, the results
matching all the given data (eg: AND) are returned.

	
match_record_type(record_type, match)

	Sets a Type for querying objects having records implementing a given record type.

	Parameters:	
	record_type (osid.type.Type) – a record type

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – record_type is null

	
match_any_record(match)

	Matches an object that has any record.

	Parameters:	match (boolean) – true to match any record, false to match objects with no records

	
record_terms

	

Osid Browsable Query

	
class dlkit.osid.queries.OsidBrowsableQuery

	Bases: dlkit.osid.queries.OsidQuery

The OsidBrowsableQuery is used to assemble search queries for Browsable objects.

An OsidBrowsableQuery is available from an OsidQuerySession
and defines methods to match objects. Once the desired parameters
are set, the OsidBrowsableQuery is given to the designated
search method. The same OsidBrowsableQuery returned from the
session must be used in the search as the provider may utilize
implementation-specific data wiithin the object.

If multiple data elements are set in this interface, the results
matching all the given data (eg: AND) are returned.

Osid Temporal Query

	
class dlkit.osid.queries.OsidTemporalQuery

	Bases: dlkit.osid.queries.OsidQuery

This is the query interface for searching temporal objects.

Each method specifies an AND term while multiple invocations of
the same method produce a nested OR.

	
match_effective(match)

	Match effective objects where the current date falls within the start and end dates inclusive.

	Parameters:	match (boolean) – true to match any effective, false to match ineffective

	
effective_terms

	

	
match_start_date(start, end, match)

	Matches temporals whose start date falls in between the given dates inclusive.

	Parameters:	
	start (osid.calendaring.DateTime) – start of date range

	end (osid.calendaring.DateTime) – end of date range

	match (boolean) – true if a positive match, false for a negative match

	Raise:	InvalidArgument – start is less than end

	Raise:	NullArgument – start or end is null

	
match_any_start_date(match)

	Matches temporals with any start date set.

	Parameters:	match (boolean) – true to match any start date, false to match no start date

	
start_date_terms

	

	
match_end_date(start, end, match)

	Matches temporals whose effective end date falls in between the given dates inclusive.

	Parameters:	
	start (osid.calendaring.DateTime) – start of date range

	end (osid.calendaring.DateTime) – end of date range

	match (boolean) – true if a positive match, false for negative match

	Raise:	InvalidArgument – start is less than end

	Raise:	NullArgument – start or end is null

	
match_any_end_date(match)

	Matches temporals with any end date set.

	Parameters:	match (boolean) – true to match any end date, false to match no start date

	
end_date_terms

	

	
match_date(from_, to, match)

	Matches temporals where the given date range falls entirely between the start and end dates inclusive.

	Parameters:	
	from (osid.calendaring.DateTime) – start date

	to (osid.calendaring.DateTime) – end date

	match (boolean) – true if a positive match, false for a negative match

	Raise:	InvalidArgument – from is less than to

	Raise:	NullArgument – from or to is null

	
date_terms

	

Osid Subjugateable Query

	
class dlkit.osid.queries.OsidSubjugateableQuery

	Bases: dlkit.osid.queries.OsidQuery

The OsidSubjugateableQuery is used to assemble search queries for dependent objects.

Osid Aggregateable Query

	
class dlkit.osid.queries.OsidAggregateableQuery

	Bases: dlkit.osid.queries.OsidQuery

The OsidAggregateableQuery is used to assemble search queries for assemblages.

Osid Containable Query

	
class dlkit.osid.queries.OsidContainableQuery

	Bases: dlkit.osid.queries.OsidQuery

This is the query interface for searching containers.

Each method specifies an AND term while multiple invocations of
the same method produce a nested OR.

	
match_sequestered(match)

	Match containables that are sequestered.

	Parameters:	match (boolean) – true to match any sequestered containables, false to match non-sequestered containables

	
sequestered_terms

	

Osid Sourceable Query

	
class dlkit.osid.queries.OsidSourceableQuery

	Bases: dlkit.osid.queries.OsidQuery

The OsidSourceableQuery is used to assemble search queries for sourceables.

	
match_provider_id(resource_id, match)

	Match the Id of the provider resource.

	Parameters:	
	resource_id (osid.id.Id) – Id to match

	match (boolean) – true if for a positive match, false for a negative match

	Raise:	NullArgument – resource_id is null

	
provider_id_terms

	

	
supports_provider_query()

	Tests if a ResourceQuery for the provider is available.

	Returns:	true if a resource query is available, false otherwise

	Return type:	boolean

	
get_provider_query(match)

	Gets the query for the provider.

Each retrieval performs a boolean OR.

	Parameters:	match (boolean) – true if for a positive match, false for a negative match

	Returns:	the provider query

	Return type:	osid.resource.ResourceQuery

	Raise:	Unimplemented – supports_provider_query() is false

	
match_any_provider(match)

	Match sourceables with a provider value.

	Parameters:	match (boolean) – true to match sourceables with any provider, false to match sourceables with no providers

	
provider_terms

	

	
match_branding_id(asset_id, match)

	Match the Id of an asset used for branding.

	Parameters:	
	asset_id (osid.id.Id) – Id to match

	match (boolean) – true if for a positive match, false for a negative match

	Raise:	NullArgument – asset_id is null

	
branding_id_terms

	

	
supports_branding_query()

	Tests if an AssetQuery for the branding is available.

	Returns:	true if a asset query is available, false otherwise

	Return type:	boolean

	
get_branding_query(match)

	Gets the query for an asset.

Each retrieval performs a boolean OR.

	Parameters:	match (boolean) – true if for a positive match, false for a negative match

	Returns:	the asset query

	Return type:	osid.repository.AssetQuery

	Raise:	Unimplemented – supports_branding_query() is false

	
match_any_branding(match)

	Match sourceables with any branding.

	Parameters:	match (boolean) – true to match any asset, false to match no assets

	
branding_terms

	

	
match_license(license_, string_match_type, match)

	Adds a license to match.

Multiple license matches can be added to perform a boolean
OR among them.

	Parameters:	
	license (string) – a string to match

	string_match_type (osid.type.Type) – the string match type

	match (boolean) – true for a positive match, false for a negative match

	Raise:	InvalidArgument – license is not of string_match_type

	Raise:	NullArgument – license or string_match_type is null

	Raise:	Unsupported – supports_string_match_type(string_match_type) is false

	
match_any_license(match)

	Matches any object with a license.

	Parameters:	match (boolean) – true to match any license, false to match objects with no license

	
license_terms

	

Osid Federateable Query

	
class dlkit.osid.queries.OsidFederateableQuery

	Bases: dlkit.osid.queries.OsidQuery

The OsidFederateableQuery is used to assemble search queries for federated objects.

Osid Operable Query

	
class dlkit.osid.queries.OsidOperableQuery

	Bases: dlkit.osid.queries.OsidQuery

This is the query interface for searching operables.

Each method specifies an AND term while multiple invocations of
the same method produce a nested OR.

	
match_active(match)

	Matches active.

	Parameters:	match (boolean) – true to match active, false to match inactive

	
active_terms

	

	
match_enabled(match)

	Matches administratively enabled.

	Parameters:	match (boolean) – true to match administratively enabled, false otherwise

	
enabled_terms

	

	
match_disabled(match)

	Matches administratively disabled.

	Parameters:	match (boolean) – true to match administratively disabled, false otherwise

	
disabled_terms

	

	
match_operational(match)

	Matches operational operables.

	Parameters:	match (boolean) – true to match operational, false to match not operational

	
operational_terms

	

Osid Object Query

	
class dlkit.osid.queries.OsidObjectQuery

	Bases: dlkit.osid.queries.OsidIdentifiableQuery, dlkit.osid.queries.OsidExtensibleQuery, dlkit.osid.queries.OsidBrowsableQuery

The OsidObjectQuery is used to assemble search queries.

An OsidObjectQuery is available from an OsidSession and
defines methods to query for an OsidObject that includes setting
a display name and a description. Once the desired parameters are
set, the OsidQuery is given to the designated search method. The
same OsidQuery returned from the session must be used in the
search as the provider may utilize implementation-specific data
wiithin the object.

If multiple data elements are set in this interface, the results
matching all the given data (eg: AND) are returned.

Any match method inside an OsidObjectQuery may be invoked
multiple times. In the case of a match method, each invocation adds
an element to an OR expression. Any of these terms may also be
negated through the match flag.

OsidObjectQuery { OsidQuery.matchDisplayName AND (OsidQuery.matchDescription OR OsidObjectQuery.matchDescription)}

OsidObjects allow for the definition of an additonal records and
the OsidQuery parallels this mechanism. An interface type of an
OsidObject record must also define the corresponding
OsidQuery record which is available through query interfaces.
Multiple requests of these typed interfaces may return the same
underlying object and thus it is only useful to request once.

String searches are described using a string search Type that
indicates the type of regular expression or wildcarding encoding.
Compatibility with a strings search Type can be tested within
this interface.

As with all aspects of OSIDs, nulls cannot be used. Separate tests
are available for querying for unset values except for required
fields.

An example to find all objects whose name starts with “Fred” or
whose name starts with “Barney”, but the word “dinosaur” does not
appear in the description and not the color is not purple.
ColorQuery is a record of the object that defines a color.

ObjectObjectQuery query;
query = session.getObjectQuery();
query.matchDisplayName(“Fred*”, wildcardStringMatchType, true);
query.matchDisplayName(“Barney*”, wildcardStringMatchType, true);
query.matchDescriptionMatch(“dinosaur”, wordStringMatchType, false);

ColorQuery recordQuery;
recordQuery = query.getObjectRecord(colorRecordType);
recordQuery.matchColor(“purple”, false);
ObjectList list = session.getObjectsByQuery(query);

	
match_display_name(display_name, string_match_type, match)

	Adds a display name to match.

Multiple display name matches can be added to perform a boolean
OR among them.

	Parameters:	
	display_name (string) – display name to match

	string_match_type (osid.type.Type) – the string match type

	match (boolean) – true for a positive match, false for a negative match

	Raise:	InvalidArgument – display_name is not of string_match_type

	Raise:	NullArgument – display_name or string_match_type is null

	Raise:	Unsupported – supports_string_match_type(string_match_type) is false

	
match_any_display_name(match)

	Matches any object with a display name.

	Parameters:	match (boolean) – true to match any display name, false to match objects with no display name

	
display_name_terms

	

	
match_description(description, string_match_type, match)

	Adds a description name to match.

Multiple description matches can be added to perform a boolean
OR among them.

	Parameters:	
	description (string) – description to match

	string_match_type (osid.type.Type) – the string match type

	match (boolean) – true for a positive match, false for a negative match

	Raise:	InvalidArgument – description is not of string_match_type

	Raise:	NullArgument – description or string_match_type is null

	Raise:	Unsupported – supports_string_match_type(string_match_type) is false

	
match_any_description(match)

	Matches a description that has any value.

	Parameters:	match (boolean) – true to match any description, false to match descriptions with no values

	
description_terms

	

	
match_genus_type(genus_type, match)

	Sets a Type for querying objects of a given genus.

A genus type matches if the specified type is the same genus as
the object genus type.

	Parameters:	
	genus_type (osid.type.Type) – the object genus type

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – genus_type is null

	
match_any_genus_type(match)

	Matches an object that has any genus type.

	Parameters:	match (boolean) – true to match any genus type, false to match objects with no genus type

	
genus_type_terms

	

	
match_parent_genus_type(genus_type, match)

	Sets a Type for querying objects of a given genus.

A genus type matches if the specified type is the same genus as
the object or if the specified type is an ancestor of the object
genus in a type hierarchy.

	Parameters:	
	genus_type (osid.type.Type) – the object genus type

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – genus_type is null

	
parent_genus_type_terms

	

	
match_subject_id(subject_id, match)

	Matches an object with a relationship to the given subject.

	Parameters:	
	subject_id (osid.id.Id) – a subject Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – subject_id is null

	
subject_id_terms

	

	
supports_subject_query()

	Tests if a SubjectQuery is available.

	Returns:	true if a subject query is available, false otherwise

	Return type:	boolean

	
subject_query

	Gets the query for a subject.

Multiple retrievals produce a nested OR term.

	Returns:	the subject query

	Return type:	osid.ontology.SubjectQuery

	Raise:	Unimplemented – supports_subject_query() is false

	
match_any_subject(match)

	Matches an object that has any relationship to a Subject.

	Parameters:	match (boolean) – true to match any subject, false to match objects with no subjects

	
subject_terms

	

	
supports_subject_relevancy_query()

	Tests if a RelevancyQuery is available to provide queries about the relationships to Subjects.

	Returns:	true if a relevancy entry query is available, false otherwise

	Return type:	boolean

	
subject_relevancy_query

	Gets the query for a subject relevancy.

Multiple retrievals produce a nested OR term.

	Returns:	the relevancy query

	Return type:	osid.ontology.RelevancyQuery

	Raise:	Unimplemented – supports_subject_relevancy_query() is false

	
subject_relevancy_terms

	

	
match_state_id(state_id, match)

	Matches an object mapped to the given state.

	Parameters:	
	state_id (osid.id.Id) – a state Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – state_id is null

	
state_id_terms

	

	
supports_state_query()

	Tests if a StateQuery is available to provide queries of processed objects.

	Returns:	true if a state query is available, false otherwise

	Return type:	boolean

	
state_query

	Gets the query for a state.

Multiple retrievals produce a nested OR term.

	Returns:	the journal entry query

	Return type:	osid.process.StateQuery

	Raise:	Unimplemented – supports_state_query() is false

	
match_any_state(match)

	Matches an object that has any mapping to a State in the given Process.

	Parameters:	match (boolean) – true to match any state, false to match objects with no states

	
state_terms

	

	
match_comment_id(comment_id, match)

	Matches an object that has the given comment.

	Parameters:	
	comment_id (osid.id.Id) – a comment Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – comment_id is null

	
comment_id_terms

	

	
supports_comment_query()

	Tests if a CommentQuery is available.

	Returns:	true if a comment query is available, false otherwise

	Return type:	boolean

	
comment_query

	Gets the query for a comment.

Multiple retrievals produce a nested OR term.

	Returns:	the comment query

	Return type:	osid.commenting.CommentQuery

	Raise:	Unimplemented – supports_comment_query() is false

	
match_any_comment(match)

	Matches an object that has any Comment in the given Book.

	Parameters:	match (boolean) – true to match any comment, false to match objects with no comments

	
comment_terms

	

	
match_journal_entry_id(journal_entry_id, match)

	Matches an object that has the given journal entry.

	Parameters:	
	journal_entry_id (osid.id.Id) – a journal entry Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – journal_entry_id is null

	
journal_entry_id_terms

	

	
supports_journal_entry_query()

	Tests if a JournalEntry is available to provide queries of journaled OsidObjects.

	Returns:	true if a journal entry query is available, false otherwise

	Return type:	boolean

	
journal_entry_query

	Gets the query for a journal entry.

Multiple retrievals produce a nested OR term.

	Returns:	the journal entry query

	Return type:	osid.journaling.JournalEntryQuery

	Raise:	Unimplemented – supports_journal_entry_query() is false

	
match_any_journal_entry(match)

	Matches an object that has any JournalEntry in the given Journal.

	Parameters:	match (boolean) – true to match any journal entry, false to match objects with no journal entries

	
journal_entry_terms

	

	
supports_statistic_query()

	Tests if a StatisticQuery is available to provide statistical queries.

	Returns:	true if a statistic query is available, false otherwise

	Return type:	boolean

	
statistic_query

	Gets the query for a statistic.

Multiple retrievals produce a nested OR term.

	Returns:	the statistic query

	Return type:	osid.metering.StatisticQuery

	Raise:	Unimplemented – supports_statistic_query() is false

	
match_any_statistic(match)

	Matches an object that has any Statistic.

	Parameters:	match (boolean) – true to match any statistic, false to match objects with no statistics

	
statistic_terms

	

	
match_credit_id(credit_id, match)

	Matches an object that has the given credit.

	Parameters:	
	credit_id (osid.id.Id) – a credit Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – credit_id is null

	
credit_id_terms

	

	
supports_credit_query()

	Tests if a CreditQuery is available to provide queries of related acknowledgements.

	Returns:	true if a credit query is available, false otherwise

	Return type:	boolean

	
credit_query

	Gets the query for an ackowledgement credit.

Multiple retrievals produce a nested OR term.

	Returns:	the credit query

	Return type:	osid.acknowledgement.CreditQuery

	Raise:	Unimplemented – supports_credit_query() is false

	
match_any_credit(match)

	Matches an object that has any Credit.

	Parameters:	match (boolean) – true to match any credit, false to match objects with no credits

	
credit_terms

	

	
match_relationship_id(relationship_id, match)

	Matches an object that has the given relationship.

	Parameters:	
	relationship_id (osid.id.Id) – a relationship Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – relationship_id is null

	
relationship_id_terms

	

	
supports_relationship_query()

	Tests if a RelationshipQuery is available.

	Returns:	true if a relationship query is available, false otherwise

	Return type:	boolean

	
relationship_query

	Gets the query for relationship.

Multiple retrievals produce a nested OR term.

	Returns:	the relationship query

	Return type:	osid.relationship.RelationshipQuery

	Raise:	Unimplemented – supports_relationship_query() is false

	
match_any_relationship(match)

	Matches an object that has any Relationship.

	Parameters:	match (boolean) – true to match any relationship, false to match objects with no relationships

	
relationship_terms

	

	
match_relationship_peer_id(peer_id, match)

	Matches an object that has a relationship to the given peer Id.

	Parameters:	
	peer_id (osid.id.Id) – a relationship peer Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – peer_id is null

	
relationship_peer_id_terms

	

Osid Relationship Query

	
class dlkit.osid.queries.OsidRelationshipQuery

	Bases: dlkit.osid.queries.OsidObjectQuery, dlkit.osid.queries.OsidTemporalQuery

This is the query interface for searching relationships.

Each method specifies an AND term while multiple invocations of
the same method produce a nested OR.

	
match_end_reason_id(state_id, match)

	Match the Id of the end reason state.

	Parameters:	
	state_id (osid.id.Id) – Id to match

	match (boolean) – true if for a positive match, false for a negative match

	Raise:	NullArgument – rule_id is null

	
end_reason_id_terms

	

	
supports_end_reason_query()

	Tests if a StateQuery for the end reason is available.

	Returns:	true if a end reason query is available, false otherwise

	Return type:	boolean

	
get_end_reason_query(match)

	Gets the query for the end reason state.

Each retrieval performs a boolean OR.

	Parameters:	match (boolean) – true if for a positive match, false for a negative match

	Returns:	the state query

	Return type:	osid.process.StateQuery

	Raise:	Unimplemented – supports_end_reason_query() is false

	
match_any_end_reason(match)

	Match any end reason state.

	Parameters:	match (boolean) – true to match any state, false to match no state

	
end_reason_terms

	

Osid Catalog Query

	
class dlkit.osid.queries.OsidCatalogQuery

	Bases: dlkit.osid.queries.OsidObjectQuery, dlkit.osid.queries.OsidSourceableQuery, dlkit.osid.queries.OsidFederateableQuery

The OsidCatalogQuery is used to assemble search queries for catalogs.

Osid Rule Query

	
class dlkit.osid.queries.OsidRuleQuery

	Bases: dlkit.osid.queries.OsidObjectQuery, dlkit.osid.queries.OsidOperableQuery

This is the query interface for searching rules.

Each method specifies an AND term while multiple invocations of
the same method produce a nested OR.

	
match_rule_id(rule_id, match)

	Match the Id of the rule.

	Parameters:	
	rule_id (osid.id.Id) – Id to match

	match (boolean) – true if for a positive match, false for a negative match

	Raise:	NullArgument – rule_id is null

	
rule_id_terms

	

	
supports_rule_query()

	Tests if a RuleQuery for the rule is available.

	Returns:	true if a rule query is available, false otherwise

	Return type:	boolean

	
get_rule_query(match)

	Gets the query for the rule.

Each retrieval performs a boolean OR.

	Parameters:	match (boolean) – true if for a positive match, false for a negative match

	Returns:	the rule query

	Return type:	osid.rules.RuleQuery

	Raise:	Unimplemented – supports_rule_query() is false

	
match_any_rule(match)

	Match any associated rule.

	Parameters:	match (boolean) – true to match any rule, false to match no rules

	
rule_terms

	

Osid Enabler Query

	
class dlkit.osid.queries.OsidEnablerQuery

	Bases: dlkit.osid.queries.OsidRuleQuery, dlkit.osid.queries.OsidTemporalQuery

This is the query interface for searching enablers.

Each method specifies an AND term while multiple invocations of
the same method produce a nested OR.

	
match_schedule_id(schedule_id, match)

	Match the Id of an associated schedule.

	Parameters:	
	schedule_id (osid.id.Id) – Id to match

	match (boolean) – true if for a positive match, false for a negative match

	Raise:	NullArgument – schedule_id is null

	
schedule_id_terms

	

	
supports_schedule_query()

	Tests if a ScheduleQuery for the rule is available.

	Returns:	true if a schedule query is available, false otherwise

	Return type:	boolean

	
get_schedule_query(match)

	Gets the query for the schedule.

Each retrieval performs a boolean OR.

	Parameters:	match (boolean) – true if for a positive match, false for a negative match

	Returns:	the schedule query

	Return type:	osid.calendaring.ScheduleQuery

	Raise:	Unimplemented – supports_schedule_query() is false

	
match_any_schedule(match)

	Match any associated schedule.

	Parameters:	match (boolean) – true to match any schedule, false to match no schedules

	
schedule_terms

	

	
match_event_id(event_id, match)

	Match the Id of an associated event.

	Parameters:	
	event_id (osid.id.Id) – Id to match

	match (boolean) – true if for a positive match, false for a negative match

	Raise:	NullArgument – event_id is null

	
event_id_terms

	

	
supports_event_query()

	Tests if a EventQuery for the rule is available.

	Returns:	true if an event query is available, false otherwise

	Return type:	boolean

	
get_event_query(match)

	Gets the query for the event.

Each retrieval performs a boolean OR.

	Parameters:	match (boolean) – true if for a positive match, false for a negative match

	Returns:	the event query

	Return type:	osid.calendaring.EventQuery

	Raise:	Unimplemented – supports_event_query() is false

	
match_any_event(match)

	Match any associated event.

	Parameters:	match (boolean) – true to match any event, false to match no events

	
event_terms

	

	
match_cyclic_event_id(cyclic_event_id, match)

	Sets the cyclic event Id for this query.

	Parameters:	
	cyclic_event_id (osid.id.Id) – the cyclic event Id

	match (boolean) – true for a positive match, false for a negative match

	Raise:	NullArgument – cyclic_event_id is null

	
cyclic_event_id_terms

	

	
supports_cyclic_event_query()

	Tests if a CyclicEventQuery is available.

	Returns:	true if a cyclic event query is available, false otherwise

	Return type:	boolean

	
cyclic_event_query

	Gets the query for a cyclic event.

Multiple retrievals produce a nested OR term.

	Returns:	the cyclic event query

	Return type:	osid.calendaring.cycle.CyclicEventQuery

	Raise:	Unimplemented – supports_cyclic_event_query() is false

	
match_any_cyclic_event(match)

	Matches any enabler with a cyclic event.

	Parameters:	match (boolean) – true to match any enablers with a cyclic event, false to match enablers with no cyclic events

	
cyclic_event_terms

	

	
match_demographic_id(resource_id, match)

	Match the Id of the demographic resource.

	Parameters:	
	resource_id (osid.id.Id) – Id to match

	match (boolean) – true if for a positive match, false for a negative match

	Raise:	NullArgument – resource_id is null

	
demographic_id_terms

	

	
supports_demographic_query()

	Tests if a ResourceQuery for the demographic is available.

	Returns:	true if a resource query is available, false otherwise

	Return type:	boolean

	
get_demographic_query(match)

	Gets the query for the resource.

Each retrieval performs a boolean OR.

	Parameters:	match (boolean) – true if for a positive match, false for a negative match

	Returns:	the resource query

	Return type:	osid.resource.ResourceQuery

	Raise:	Unimplemented – supports_resource_query() is false

	
match_any_demographic(match)

	Match any associated resource.

	Parameters:	match (boolean) – true to match any demographic, false to match no rules

	
demographic_terms

	

Osid Constrainer Query

	
class dlkit.osid.queries.OsidConstrainerQuery

	Bases: dlkit.osid.queries.OsidRuleQuery

This is the query interface for searching constrainers.

Each method specifies an AND term while multiple invocations of
the same method produce a nested OR.

Osid Processor Query

	
class dlkit.osid.queries.OsidProcessorQuery

	Bases: dlkit.osid.queries.OsidRuleQuery

This is the query interface for searching processors.

Each method specifies an AND term while multiple invocations of
the same method produce a nested OR.

Osid Governator Query

	
class dlkit.osid.queries.OsidGovernatorQuery

	Bases: dlkit.osid.queries.OsidObjectQuery, dlkit.osid.queries.OsidOperableQuery, dlkit.osid.queries.OsidSourceableQuery

This is the query interface for searching governers.

Each method specifies an AND term while multiple invocations of
the same method produce a nested OR.

Osid Compendium Query

	
class dlkit.osid.queries.OsidCompendiumQuery

	Bases: dlkit.osid.queries.OsidObjectQuery, dlkit.osid.queries.OsidSubjugateableQuery

This is the query interface for searching reports.

Each method specifies an AND term while multiple invocations of
the same method produce a nested OR.

	
match_start_date(start, end, match)

	Matches reports whose start date falls in between the given dates inclusive.

	Parameters:	
	start (osid.calendaring.DateTime) – start of date range

	end (osid.calendaring.DateTime) – end of date range

	match (boolean) – true if a positive match, false for a negative match

	Raise:	InvalidArgument – start is less than end

	Raise:	NullArgument – start or end is null

	
match_any_start_date(match)

	Matches reports with any start date set.

	Parameters:	match (boolean) – true to match any start date, false to match no start date

	
start_date_terms

	

	
match_end_date(start, end, match)

	Matches reports whose effective end date falls in between the given dates inclusive.

	Parameters:	
	start (osid.calendaring.DateTime) – start of date range

	end (osid.calendaring.DateTime) – end of date range

	match (boolean) – true if a positive match, false for negative match

	Raise:	InvalidArgument – start is less than end

	Raise:	NullArgument – start or end is null

	
match_any_end_date(match)

	Matches reports with any end date set.

	Parameters:	match (boolean) – true to match any end date, false to match no start date

	
end_date_terms

	

	
match_interpolated(match)

	Match reports that are interpolated.

	Parameters:	match (boolean) – true to match any interpolated reports, false to match non-interpolated reports

	
interpolated_terms

	

	
match_extrapolated(match)

	Match reports that are extrapolated.

	Parameters:	match (boolean) – true to match any extrapolated reports, false to match non-extrapolated reports

	
extrapolated_terms

	

Osid Capsule Query

	
class dlkit.osid.queries.OsidCapsuleQuery

	Bases: dlkit.osid.queries.OsidQuery

This is the query interface for searching capsulating interfaces.

Each method specifies an AND term while multiple invocations of
the same method produce a nested OR.

 Core Service Interface Definitions
osid version 3.0.0

The Open Service Interface Definitions (OSIDs) is a service-based
architecture to promote software interoperability. The OSIDs are a large
suite of interface contract specifications that describe the integration
points among services and system components for the purpose of creating
choice among a variety of different and independently developed
applications and systems, allowing independent evolution of software
components within a complex system, and federated service providers.

The OSIDs were initially developed in 2001 as part of the MIT Open
Knowledge Initiative Project funded by the Andrew W. Mellon Foundation
to provide an architecture for higher education learning systems. OSID
3K development began in 2006 to redesign the capabilities of the
specifications to apply to a much broader range of service domains and
integration challenges among both small and large-scale enterprise
systems.

The osid package defines the building blocks for the OSIDs which are
defined in packages for their respective services. This package defines
the top-level interfaces used by all the OSIDs as well as specification
metadata and the OSID Runtime interface.

Meta Interfaces and Enumerations

	OSID: an enumeration listing the OSIDs defined in the
specification.

	Syntax: an enumeration listing primitive types

	Metadata: an interface for describing data constraints on a data
element

Interface Behavioral Markers

Interface behavioral markers are used to tag a behavioral pattern of the
interface used to construct other object interfaces.

	OsidPrimitive: marks an OSID interface used as a primitive. OSID
primitives may take the form interfaces if not bound to a language
primitive. Interfaces used as primitives are marked to indicate that
the underlying objects may be constructed by an OSID Consumer and an
OSID Provider must honor any OSID primitive regardless of its
origin.

	Identifiable: Marks an interface identifiable by an OSID Id.

	Extensible: Marks an interface as extensible through
OsidRecords.

	Browsable: Marks an interface as providing Property
inspection for its OsidRecords.

	Suppliable: Marks an interface as accepting data from an OSID
Consumer.

	Temporal: Marks an interface that has a lifetime with begin an
end dates.

	Subjugateable: Mars an interface that is dependent on another
object.

	Aggregateable: Marks an interface that contains other objects
normally related through other services.

	Containable: Marks an interface that contains a recursive
reference to itself.

	Sourceable: Marks an interface as having a provider.

	Federateable: Marks an interface that can be federated using the
OSID Hierarchy pattern.

	Operable: Marks an interface as responsible for performing
operatons or tasks. Operables may be enabled or disabled.

Abstract service Interfaces

	OsidProfile: Defines interoperability methods used by
OsidManagers.

	OsidManager: The entry point into an OSID and provides access to
OsidSessions.

	OsidProxyManager: Another entry point into an OSID providing a
means for proxying data from a middle tier application server to an
underlying OSID Provider.

	OsidSession : A service interface accessible from an
OsidManager that defines a set of methods for an aspect of a
service.

Object-like interfaces are generally defined along lines of
interoperability separating issues of data access from data management
and searching. These interfaces may also implement any of the abstract
behavioral interfaces listed above. The OSIDs do not adhere to a DAO/DTO
model in its service definitions in that there are service methods
defined on the objects (although they can be implemented using DTOs if
desired). For the sake of an outline, we’ll pretend they are data
objects.

	OsidObject: Defines object data. OsidObjects are accessed
from OsidSessions. OsidObjects are part of an interface
hierarchy whose interfaces include the behavioral markers and a
variety of common OsidObjects. All OsidObjects are
Identifiable, Extensible, and have a Type. There are
several variants of OsidObjects that indicate a more precise
behavior.

	OsidObjectQuery: Defines a set of methods to query an OSID for
its OsidObjects . An OsidQuery is accessed from an
OsidSession.

	OsidObjectQueryInspector: Defines a set of methods to examine an
OsidQuery.

	OsidObjectForm: Defines a set of methods to create and update
data. OsidForms are accessed from OsidSessions.

	OsidObjectSearchOrder: Defines a set of methods to order search
results. OsidSearchOrders are accessed from OsidSessions.

Most objects are or are derived from OsidObjects. Some object
interfaces may not implement OsidObejct but instead derive directly
from interface behavioral markers. Other OsidObjects may include
interface behavioral markers to indicate functionality beyond a plain
object. Several categories of OsidObjects have been defined to
cluster behaviors to semantically distinguish their function in the
OSIDs.

	OsidCatalog: At the basic level, a catalog represents a
collection of other OsidObjects. The collection may be physical
or virtual and may be federated to build larger OsidCatalogs
using hierarchy services. OsidCatalogs may serve as a control
point to filter or constrain the OsidObjects that may be visible
or created. Each OsidCatalog may have its own provider identifty
apart from the service provider.

	OsidRelationship: Relates two OsidObjects. The
OsidRelationship represents the edge in a graph that may have
its own relationship type and data. OsidRelationships are
Temporal in that they have a time in which the relationship came
into being and a time when the relationship ends.

	OsidRule: Defines an injection point for logic. An OsidRule
may represent some constraint, evaluation, or execution. While
authoring of OsidRules is outside the scope of the OSIDs, an
OsidRule provides the mean to identify the rule and map it to
certain OsidObjects to effect behavior of a service.

The most basic operations of an OSID center on retrieval, search, create
& update, and notifications on changes to an OsidObject. The more
advanced OSIDs model a system behavior where a variety of implicit
relationships, constraints and rules come into play.

	OsidGovernator: Implies an activity or operation exists in the
OSID Provider acting as an Operable point for a set of rules
governing related OsidObjects. The OsidGovernator represents
an engine of sorts in an OSID Provider and may have its own provider
identity.

	OsidCompendium : OsidObjects which are reports or summaries
based on transactional data managed elsewhere.

Managing data governing rules occurs in a separate set of interfaces
from the effected OsidObjects (and often in a separate package).
This allows for a normalized set of rules managing a small set of
control points in a potentially large service.

	OsidEnabler: A managed control point to enable or disable the
operation or effectiveness of another OsidObject . Enablers
create a dynamic environment where behaviors and relationships can
come and go based on rule evauations.

	OsidConstrainer: A managed control point to configure the
constraints on the behavior of another OsidObject.

	OsidProcessor: A managed control point to configure the behavior
of another OsidObject where some kins of processing is implied.

Other Abstract Interfaces

	OsidSearch: Defines set of methods to manage search options for
performing searches.

	OsidSearchResults: Defines a set of methods to examine search
results.

	OsidReceiver: Defines a set of methods invoked for asynchronous
notification.

	OsidList: Defines a set of methods to sequentially access a set
of objects.

	OsidNode: An interface used by hierarchy nodes.

	OsidCondition: An input or “statement of fact” into an
OsidRule evaluation.

	OsidInput: An input of source data into an OsidRule
processor.

	OsidResult: The output from processing an OsidRule.

	OsidRecord: An interface marker for an extension to another
interface. OsidRecord are negotiated using OSID Types.

	Property: Maps a name to a value. Properties are available in
OSID objects to provide a simplified view of data that may exist
within a typed interface.

	PropertyList: A list of properties.

Runtime

	OsidRuntimeProfile: The OsidProfile for the runtime
OsidManager.

	OsidRuntimeManager: The OSID Runtime service.

Abstract Flow

Generally, these definitions are abstract and not accesed directly. They
are used as building blocks to define interfaces in the OSIDs
themselves. OSIDs derive most of their definitions from a definition in
the osid package. The methods that are defined at this abstract level
versus the methods defined directly in a specific OSID is determined by
the typing in the method signatures. The osid package interfaces are a
means of ensuring consistency of common methods and not designed to
facilitate object polymorphism among different OSIDs. A language binder
may elect to alter the interface hierarchy presented in this
specification and a provider need not parallel these interfaces in their
implementations.

The flow of control through any OSID can be described in terms of these
definitions. An OsidManager or OsidProxyManager is retrieved
from the OsidRuntimeManager for a given service. Both types of
managers share an interface for describing what they support in the
OsidProfile.

OsidSessions are created from the OsidManager. OsidSessions
tend to be organized along clusters of like-functionality. Lookup-
oriented sessions retrieve OsidObjects. Return of multiple
OsidObjects is done via the OsidList. Search-oriented sessions
retrieve OsidObjects through searches provided through the
OsidQuery and OsidSearch interfaces.

Administrative-oriented sessions create and update OsidObjects using
the OsidForm interface. The OsidForm makes available
Metadata to help define its rules for setting and changing various
data elements.

OsidObjects can be organized within OsidCatalogs. An
OsidCatalog is hierarchical and can be traversed through an
OsidNode. An OsidQuery or an OsidSearchOrder may be mapped
to a dynamic OsidCatalog. Such a query may be examined using an
OsidQueryInspector.

A notification session provides a means for subscribing to events, “a
new object has been created”, for example, and these events are received
from an OsidReceiver.

Meta OSID Specification

The OSID Specification framework defines the interace and method
structures as well as the language primitives and errors used throughout
the OSIDs. The OSID Specifications are defined completely in terms of
interfaces and the elements specified in the meta specification.

Language Primitives

Ths meta OSID Specification enumerates the allowable language primitives
that can be used in OSID method signatures. Parameters and returns in
OSID methods may be specified in terms of other OSID interfaces or using
one of these primitives. An OSID Binder translates these language
primitives into an appropriate language primitive counterpart.

An OSID Primitive differs from a language primitive. An OSID Primitive
is an interface used to describe a more complex structure than a simple
language primitive can support. Both OSID Primitives and language
primitives have the same behavior in the OSIDs in that an there is no
service encapsulation present allowing OSID Primitives to be consructed
by an OSID Consumer.

Errors

OSID methods are required to return a value, if specified, or return one
of the errors specified in the method signature. The meta package
defines the set of errors that a method signtaure may use.

Errors should result when the contract of the interface as been violated
or cannot be fulfilled and it is necessary to disrupt the flow of
control for a consumer. Different errors are specified where it is
forseen that a consumer may wish to execute a different action without
violating the encapsulation of internal provider operations. Such
actions do not include debugging or other detailed information which is
the responsibility of the provider to manage. As such, the number of
errors defined across all the interfaces is kept to a minimum and the
context of the error may vary from method to method in accordance with
the spceification.

Errors are categorized to convey the audience to which the error
pertains.

	User Errors: Errors which may be the result of a user operation
intended for the user.

	Operational Errors: Errors which may be the result of a system or
some other problem intended for the user.

	Consumer Contract Errors: Software errors resulting in the use of
the OSIDs by an OSID Consumer intended for the application
programmer. These also include integration problems where the OSID
Consumer bypassed a method to test for support of a service or type.

	Provider Contract Errors: Software errors in the use of an OSID by
an OSID Provider intended for an implementation programmer.

Compliance

OSID methods include a compliance statement indicating whether a method
is required or optional to implement. An optional OSID method is one
that defines an UNIMPLEMENTED error and there is a corresponding method
to test for the existence of an implementation.

OSID 3K Acknowledgements

	Tom Coppeto (Editor & Architect)

	Scott Thorne (Architect)

The authors gratefully acknowledge the following individuals for their
time, wisdom, and contributions in shaping these specifications.

	Adam Franco, Middlebury College

	Jeffrey Merriman, Massachusetts Institute of Technology

	Charles Shubert, Massachusetts Insitute of Technology

	Prof. Marc Alier, Universitat Politècnica de Catalyuna

	Joshua Aresty, Massachusetts Institute of Technology

	Fabrizio Cardinali, Giunti Labs

	Pablo Casado, Universitat Politècnica de Catalyuna

	Alex Chapin, Middlebury College

	Craig Counterman, Massachusetts Institute of Technology

	Francesc Santanach Delisau, Universitat Oberta de Catalyuna

	Prof. Llorenç Valverde Garcia, Universitat Oberta de Catalyuna

	Catherine Iannuzzo, Massachusetts Institute of Technology

	Jeffrey Kahn, Verbena Consulting

	Michael Korcynski, Tufts University

	Anoop Kumar, Tufts University

	Eva de Lera, Universitat Oberta de Catalyuna

	Roberto García Marrodán, Universitat Oberta de Catalyuna

	Andrew McKinney, Massachusetts Institute of Technology

	Scott Morris, Apple

	Mark Norton, Nolaria Consulting

	Mark O’Neill, Dartmouth College

	Prof. Charles Severance, University of Michigan

	Stuart Sim, Sun Microsystems/Common Need

	Colin Smythe, IMS Global Learning Consortium

	George Ward, California State University

	Peter Wilkins, Massachusetts Institute of Technology

	Norman Wright, Massachusetts Institute of Technology

O.K.I. Acknowledgements

OSID 3K is based on the O.K.I. OSIDs developed as part of the MIT Open
Knowledge Initiative (O.K.I) project 2001-2004.

	Vijay Kumar, O.K.I. Principal Investigator, Massachusetts Insitute
of Technology

	Jeffrey Merriman, O.K.I. Project Director, Massachusetts Insitute of
Technology

	Scott Thorne, O.K.I. Chief Architect, Massachusetts Institute of
Technology

	Charles Shubert, O.K.I. Architect, Massachusetts Institute of
Technology

	Lois Brooks, Project Coordinator, Stanford University

	Mark Brown, O.K.I. Project Manager, Massachusetts Institute of
Technology

	Bill Fitzgerald, O.K.I. Finance Manager, Massachusetts Institute of
Technology

	Judson Harward, Educational Systems Architect, Massachusetts
Institute of Technology

	Charles Kerns, Educational Systems Architect, Stanford University

	Jeffrey Kahn, O.K.I. Partner, Verbena Consulting

	Judith Leonard, O.K.I. Project Administrator, Massachusetts
Institute of Technology

	Phil Long, O.K.I. Outreach Coordinator, Massachusetts Institute of
Technology

	Cambridge University, O.K.I. Core Collaborator

	Dartmouth College, O.K.I. Core Collaborator

	Massachusetts Institute of Technology, O.K.I. Core Collaborator

	North Carolina State University, O.K.I. Core Collaborator

	Stanford University, O.K.I. Core Collaborator

	University of Michigan, O.K.I. Core Collaborator

	University of Pennsylvania, O.K.I. Core Collaborator

	University of Wisconsin, Madison, O.K.I. Core Collaborator

Service Managers

Osid Runtime Manager

	
class dlkit.services.osid.OsidRuntimeManager

	Bases: dlkit.services.osid.OsidManager, dlkit.services.osid.OsidRuntimeProfile

	
get_manager(osid, impl_class_name, version)

	Finds, loads and instantiates providers of OSID managers.
Providers must conform to an OsidManager interface. The
interfaces are defined in the OSID enumeration. For all OSID
requests, an instance of OsidManager that implements the
OsidManager interface is returned. In bindings where
permitted, this can be safely cast into the requested manager.

	Parameters:	
	osid (osid.OSID) – represents the OSID

	impl_class_name (string) – the name of the implementation

	version (osid.installation.Version) – the minimum required OSID specification version

	Returns:	the manager of the service

	Return type:	osid.OsidManager

	Raise:	ConfigurationError – an error in configuring the implementation

	Raise:	NotFound – the implementation class was not found

	Raise:	NullArgument – impl_class_name or version is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – impl_class_name does not support the requested OSID

	
get_proxy_manager(osid, implementation, version)

	Finds, loads and instantiates providers of OSID managers.
Providers must conform to an OsidManager interface. The
interfaces are defined in the OSID enumeration. For all OSID
requests, an instance of OsidManager that implements the
OsidManager interface is returned. In bindings where
permitted, this can be safely cast into the requested manager.

	Parameters:	
	osid (osid.OSID) – represents the OSID

	implementation (string) – the name of the implementation

	version (osid.installation.Version) – the minimum required OSID specification version

	Returns:	the manager of the service

	Return type:	osid.OsidProxyManager

	Raise:	ConfigurationError – an error in configuring the implementation

	Raise:	NotFound – the implementation class was not found

	Raise:	NullArgument – implementation or version is null

	Raise:	OperationFailed – unable to complete request

	Raise:	Unsupported – implementation does not support the requested OSID

	
configuration

	Gets the current configuration in the runtime environment.

	Returns:	a configuration

	Return type:	osid.configuration.ValueLookupSession

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – an authorization failure occured

	Raise:	Unimplemented – a configuration service is not supported

Osid Manager Methods

	
OsidRuntimeManager.initialize(runtime)

	Initializes this manager.
A manager is initialized once at the time of creation.

	Parameters:	runtime (osid.OsidRuntimeManager) – the runtime environment

	Raise:	ConfigurationError – an error with implementation configuration

	Raise:	IllegalState – this manager has already been initialized by the OsidRuntime

	Raise:	NullArgument – runtime is null

	Raise:	OperationFailed – unable to complete request

	
OsidRuntimeManager.rollback_service(rollback_time)

	Rolls back this service to a point in time.

	Parameters:	rollback_time (timestamp) – the requested time

	Returns:	the journal entry corresponding to the actual state of this service

	Return type:	osid.journaling.JournalEntry

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unimplemented – supports_journal_rollback() is false

	
OsidRuntimeManager.change_branch(branch_id)

	Changes the service branch.

	Parameters:	branch_id (osid.id.Id) – the new service branch

	Raise:	NotFound – branch_id not found

	Raise:	NullArgument – branch_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unimplemented – supports_journal_branching() is false

Osid Proxy Manager Methods

	
OsidRuntimeManager.initialize(runtime)

	Initializes this manager.
A manager is initialized once at the time of creation.

	Parameters:	runtime (osid.OsidRuntimeManager) – the runtime environment

	Raise:	ConfigurationError – an error with implementation configuration

	Raise:	IllegalState – this manager has already been initialized by the OsidRuntime

	Raise:	NullArgument – runtime is null

	Raise:	OperationFailed – unable to complete request

	
OsidRuntimeManager.rollback_service(rollback_time)

	Rolls back this service to a point in time.

	Parameters:	rollback_time (timestamp) – the requested time

	Returns:	the journal entry corresponding to the actual state of this service

	Return type:	osid.journaling.JournalEntry

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unimplemented – supports_journal_rollback() is false

	
OsidRuntimeManager.change_branch(branch_id)

	Changes the service branch.

	Parameters:	branch_id (osid.id.Id) – the new service branch

	Raise:	NotFound – branch_id not found

	Raise:	NullArgument – branch_id is null

	Raise:	OperationFailed – unable to complete request

	Raise:	PermissionDenied – authorization failure occurred

	Raise:	Unimplemented – supports_journal_branching() is false

Osid Runtime Profile Methods

	
OsidRuntimeManager.supports_configuration()

	Tests if a configuration service is provided within this runtime environment.

	Returns:	true if a configuration service is available, false otherwise

	Return type:	boolean

Objects

Osid Object

	
class dlkit.osid.objects.OsidObject

	Bases: dlkit.osid.markers.Identifiable, dlkit.osid.markers.Extensible, dlkit.osid.markers.Browsable

OsidObject is the top level interface for all OSID Objects.

An OSID Object is an object identified by an OSID Id and may
implements optional interfaces. OSID Objects also contain a display
name and a description. These fields are required but may be used
for a variety of purposes ranging from a primary name and
description of the object to a more user friendly display of various
attributes.

Creation of OSID Objects and the modification of their data is
managed through the associated OsidSession which removes the
dependency of updating data elements upon object retrieval.The
OsidManager should be used to test if updates are available and
determine what PropertyTypes are supported. The OsidManager
is also used to create the appropriate OsidSession for object
creation, updates and deletes.

All OsidObjects are identified by an immutable Id. An Id
is assigned to an object upon creation of the object and cannot be
changed once assigned.

An OsidObject may support one or more supplementary records
which are expressed in the form of interfaces. Each record interface
is identified by a Type. A record interface may extend another
record interface where support of the parent record interface is
implied. In this case of interface inheritance, support of the
parent record type may be implied through has_record_type() and
not explicit in getRecordTypes().

For example, if recordB extends recordA, typeB is a child of typeA.
If a record implements typeB, than it also implements typeA. An
application that only knows about typeA retrieves recordA. An
application that knows about typeB, retrieves recordB which is the
union of methods specified in typeA and typeB. If an application
requests typeA, it may not attempt to access methods defined in
typeB as they may not exist until explicitly requested. The
mechanics of this polymorphism is defined by the language binder.
One mechanism might be the use of casting.

In addition to the record Types, OSID Objects also have a genus
Type. A genus Type indicates a classification or kind of the
object where an “is a” relationship exists. The purpose of of the
genus Type is to avoid the creation of unnecessary record types
that may needlessly complicate an interface hierarchy or introduce
interoperability issues. For example, an OSID object may have a
record Type of Publication that defines methods pertinent to
publications, such as an ISBN number. A provider may wish to
distinguish between books and journals without having the need of
new record interfaces. In this case, the genus Type may be one
of Book or Journal. While this distinction can aid a search,
these genres should be treated in such a way that do not introduce
interoperability problems.

Like record Types, the genus Types may also exist in an implicit
type hierarchy. An OSID object always has at least one genus. Genus
types should not be confused with subject tagging, which is managed
externally to the object. Unlike record Types, an object’s genus
may be modified. However, once an object’s record is created with a
record Type, it cannot be changed.

Methods that return values are not permitted to return nulls. If a
value is not set, it is indicated in the Metadata of the update
form.

	
display_name

	Gets the preferred display name associated with this instance of this OSID object appropriate for display to the user.

	Returns:	the display name

	Return type:	osid.locale.DisplayText

	
description

	Gets the description associated with this instance of this OSID object.

	Returns:	the description

	Return type:	osid.locale.DisplayText

	
genus_type

	Gets the genus type of this object.

	Returns:	the genus type of this object

	Return type:	osid.type.Type

	
is_of_genus_type(genus_type)

	Tests if this object is of the given genus Type.

The given genus type may be supported by the object through the
type hierarchy.

	Parameters:	genus_type (osid.type.Type) – a genus type

	Returns:	true if this object is of the given genus Type, false otherwise

	Return type:	boolean

	Raise:	NullArgument – genus_type is null

Osid Relationship

	
class dlkit.osid.objects.OsidRelationship

	Bases: dlkit.osid.objects.OsidObject, dlkit.osid.markers.Temporal

A Relationship associates two OSID objects.

Relationships are transient. They define a date range for which they
are in effect.

Unlike other OsidObjects that rely on the auxiliary Journaling
OSID to track variance over time, OsidRelationships introduce a
different concept of time independent from journaling. For example,
in the present, a student was registered in a course and dropped it.
The relationship between the student and the course remains
pertinent, independent of any journaled changes that may have
occurred to either the student or the course.

Once the student has dropped the course, the relationship has
expired such that is_effective() becomes false. It can be
inferred that during the period of the effective dates, the student
was actively registered in the course. Here is an example:

	T1. September 1: Student registers for course for grades

	T2. September 10: Student drops course

	T3. September 15: Student re-registers for course pass/fail

	The relationships are:

	T1. R1 {effective, September 1 -> end of term, data=grades}
T2. R1 {ineffective, September 1 -> September 10, data=grades}
T3. R1 {ineffective, September 1 -> September 10, data=grades}

R2 {effective, September 10 -> end of term, data=p/f}

An OSID Provider may also permit dates to be set in the future in
which case the relationship can become automatically become
effective at a future time and later expire. More complex
effectiveness management can be done through other rule-based
services.

OSID Consumer lookups and queries of relationships need to consider
that it may be only effective relationshps are of interest.

	
has_end_reason()

	Tests if a reason this relationship came to an end is known.

	Returns:	true if an end reason is available, false otherwise

	Return type:	boolean

	Raise:	IllegalState – is_effective() is true

	
end_reason_id

	Gets a state Id indicating why this relationship has ended.

	Returns:	a state Id

	Return type:	osid.id.Id

	Raise:	IllegalState – has_end_reason() is false

	
end_reason

	Gets a state indicating why this relationship has ended.

	Returns:	a state

	Return type:	osid.process.State

	Raise:	IllegalState – has_end_reason() is false

	Raise:	OperationFailed – unable to complete request

Osid Catalog

	
class dlkit.osid.objects.OsidCatalog

	Bases: dlkit.osid.objects.OsidObject, dlkit.osid.markers.Sourceable, dlkit.osid.markers.Federateable

OsidCatalog is the top level interface for all OSID catalog-like objects.

A catalog relates to other OSID objects for the purpose of
organization and federation and almost always are hierarchical. An
example catalog is a Repository that relates to a collection of
Assets.

OsidCatalogs allow for the retrieval of a provider identity and
branding.

Collections visible through an OsidCatalog may be the output of
a dynamic query or some other rules-based evaluation. The facts
surrounding the evaluation are the OsidObjects visible to the
OsidCatalog from its position in the federated hierarchy. The
input conditions may satisifed on a service-wide basis using an
OsidQuery or environmental conditions supplied to the services
via a Proxy .

Often, the selection of an OsidCatalog in instantiating an
OsidSession provides access to a set of OsidObjects .
Because the view inside an OsidCatalog can also be produced
behaviorally using a rules evaluation, the Id (or well-known
alias) of the OsidCatalog may be used as an abstract means of
requesting a predefined set of behaviors or data constraints from an
OSID Provider.

The flexibility of interpretation together with its central role in
federation to build a rich and complex service from a set of
individual OSID Providers makes cataloging an essential pattern to
achieve abstraction from implementations in the OSIDs without loss
of functionality. Most OSIDs include a cataloging pattern.

Osid Rule

	
class dlkit.osid.objects.OsidRule

	Bases: dlkit.osid.objects.OsidObject, dlkit.osid.markers.Operable

An OsidRule identifies an explicit or implicit rule evaluation.

An associated Rule may be available in cases where the behavior
of the object can be explicitly modified using a defined rule. In
many cases, an OsidObject may define specific methods to manage
certain common behavioral aspects and delegate anything above and
beyond what has been defined to a rule evaluation.

Rules are defined to be operable. In the case of a statement
evaluation, an enabled rule overrides any evaluation to return
true and a disabled rule overrides any evaluation to return
false.

Rules are never required to consume or implement. They serve as
a mechanism to offer a level of management not attainable in the
immediate service definition. Each Rule implies evaluating a set of
facts known to the service to produce a resulting beavior. Rule
evaluations may also accept input data or conditions, however,
OsidRules as they appear in throughout the services may or may
not provide a means of supplying OsidConditions directly. In the
services where an explicit OsidCondition is absent they may be
masquerading as another interface such as a Proxy or an
OsidQuery .

	
has_rule()

	Tests if an explicit rule is available.

	Returns:	true if an explicit rule is available, false otherwise

	Return type:	boolean

	
rule_id

	Gets the explicit rule Id.

	Returns:	the rule Id

	Return type:	osid.id.Id

	Raise:	IllegalState – has_rule() is false

	
rule

	Gets the explicit rule.

	Returns:	the rule

	Return type:	osid.rules.Rule

	Raise:	IllegalState – has_rule() is false

	Raise:	OperationFailed – unable to complete request

Osid Enabler

	
class dlkit.osid.objects.OsidEnabler

	Bases: dlkit.osid.objects.OsidRule, dlkit.osid.markers.Temporal

OsidEnabler is used to manage the effectiveness, enabledness, or operation of an OsidObejct.

The OsidEnabler itself is active or inactive When an
OsidEnabler is active, any OsidObject mapped to it is “on.”
When all OsidEnablers mapped to an OsidObject are inactive,
then the OsidObject is “off.”

The managed OsidObject may have varying semantics as to what its
on/off status means and in particular, which methods are used to
indicate the effect of an OsidEnabler. Some axamples:

	Operables: OsidEnablers effect the operational status.

	Temporals: OsidEnablers may be used to extend or
shorten the effectiveness of a Temporal such as an
OsidRelationship.

In the case where an OsidEnabler may cause a discontinuity in a
Temporal, the OsidEnabler may cause the creation of new
Temporals to capture the gap in effectiveness.

For example, An OsidRelationship that began in 2007 may be
brought to an end in 2008 due to the absence of any active
OsidEnablers. When an effective OsidEnabler appears in 2009,
a new OsidRelationship is created with a starting effective date
of 2009 leaving the existing OsidRelationship with effective
dates from 2007 to 2008.

An OsidEnabler itself is both a Temporal and an OsidRule
whose activity status of the object may be controlled
administratively, using a span of effective dates, through an
external rule, or all three. The OsidEnabler defines a set of
canned rules based on dates, events, and cyclic events.

	
is_effective_by_schedule()

	Tests if the effectiveness of the enabler is governed by a Schedule.

If a schedule exists, it is bounded by the effective dates of
this enabler. If is_effective_by_schedule() is true,
is_effective_by_event() and
is_effective_by_cyclic_event() must be false.

	Returns:	true if the enabler is governed by schedule, false otherwise

	Return type:	boolean

	
schedule_id

	Gets the schedule Id.

	Returns:	the schedule Id

	Return type:	osid.id.Id

	Raise:	IllegalState – is_effective_by_schedule() is false

	
schedule

	Gets the schedule.

	Returns:	the schedule

	Return type:	osid.calendaring.Schedule

	Raise:	IllegalState – is_effective_by_schedule() is false

	Raise:	OperationFailed – unable to complete request

	
is_effective_by_event()

	Tests if the effectiveness of the enabler is governed by an Event such that the start and end dates of the event govern the effectiveness.

The event may also be a RecurringEvent in which case the
enabler is effective for start and end dates of each event in
the series If an event exists, it is bounded by the effective
dates of this enabler. If is_effective_by_event() is
true, is_effective_by_schedule() and
is_effective_by_cyclic_event() must be false.

	Returns:	true if the enabler is governed by an event, false otherwise

	Return type:	boolean

	
event_id

	Gets the event Id.

	Returns:	the event Id

	Return type:	osid.id.Id

	Raise:	IllegalState – is_effective_by_event() is false

	
event

	Gets the event.

	Returns:	the event

	Return type:	osid.calendaring.Event

	Raise:	IllegalState – is_effective_by_event() is false

	Raise:	OperationFailed – unable to complete request

	
is_effective_by_cyclic_event()

	Tests if the effectiveness of the enabler is governed by a CyclicEvent.

If a cyclic event exists, it is evaluated by the accompanying
cyclic time period. If is_effective_by_cyclic_event() is
true, is_effective_by_schedule() and
is_effective_by_event() must be false.

	Returns:	true if the enabler is governed by a cyclic event, false otherwise

	Return type:	boolean

	
cyclic_event_id

	Gets the cyclic event Id.

	Returns:	the cyclic event Id

	Return type:	osid.id.Id

	Raise:	IllegalState – is_effective_by_cyclic_event() is false

	
cyclic_event

	Gets the cyclic event.

	Returns:	the cyclic event

	Return type:	osid.calendaring.cycle.CyclicEvent

	Raise:	IllegalState – is_effective_by_cyclic_event() is false

	Raise:	OperationFailed – unable to complete request

	
is_effective_for_demographic()

	Tests if the effectiveness of the enabler applies to a demographic resource.

	Returns:	true if the rule apples to a demographic. false otherwise

	Return type:	boolean

	
demographic_id

	Gets the demographic resource Id.

	Returns:	the resource Id

	Return type:	osid.id.Id

	Raise:	IllegalState – is_effective_for_demographic() is false

	
demographic

	Gets the demographic resource.

	Returns:	the resource representing the demographic

	Return type:	osid.resource.Resource

	Raise:	IllegalState – is_effective_for_demographic() is false

	Raise:	OperationFailed – unable to complete request

Osid Constrainer

	
class dlkit.osid.objects.OsidConstrainer

	Bases: dlkit.osid.objects.OsidRule

An OsidConstrainer marks an interface as a control point to constrain another object.

A constrainer may define specific methods to describe the
constrainment or incorporate external logic using a rule.

Osid Processor

	
class dlkit.osid.objects.OsidProcessor

	Bases: dlkit.osid.objects.OsidRule

An OsidProcessor is an interface describing the operation of another object.

A processor may define specific methods to manage processing, or
incorporate external logic using a rule.

Osid Governator

	
class dlkit.osid.objects.OsidGovernator

	Bases: dlkit.osid.objects.OsidObject, dlkit.osid.markers.Operable, dlkit.osid.markers.Sourceable

An OsidGovernator is a control point to govern the behavior of a service.

OsidGovernators generally indicate the presence of
OsidEnablers and other rule governing interfaces to provide a
means of managing service operations and constraints from a “behind
the scenes” perspective. The OsidGovernator is a focal point for
these various rules.

OsidGovernators are Sourceable. An OsidGovernator
implies a governance that often corresponds to a provider of a
process as opposed to a catalog provider of OsidObjects.

OsidGovernators are Operable. They indicate an active and
operational status and related rules may be administratively
overridden using this control point. Administratively setting the
enabled or disabled flags in the operator overrides any enabling
rule mapped to this OsidGovernator.

Osid Compendium

	
class dlkit.osid.objects.OsidCompendium

	Bases: dlkit.osid.objects.OsidObject, dlkit.osid.markers.Subjugateable

OsidCompendium is the top level interface for reports based on measurements, calculations, summaries, or views of transactional activity within periods of time.

This time dimension of this report may align with managed time
periods, specific dates, or both. Oh my.

Reports are often derived dynamically based on an examination of
data managed elsewhere in an OSID. Reports may also be directly
managed outside where it is desirable to capture summaries without
the detail of the implied evaluated data. The behavior of a direct
create or update of a report is not specified but is not limited to
an override or a cascading update of underlying data.

The start and end date represents the date range used in the
evaluation of the transactional data on which this report is based.
The start and end date may be the same indicating that the
evaluation occurred at a point in time rather than across a date
range. The start and end date requested may differ from the start
and end date indicated in this report because of the inability to
interpolate or extrapolate the date. These dates should be examined
to understand what actually occurred and to what dates the
information in this report pertains.

These dates differ from the dates the report itself was requested,
created, or modified. The dates refer to the context of the
evaluation. In a managed report, the dates are simply the dates to
which the report information pertains. The history of a single
report may be examined in the Journaling OSID.

For example, the Location of a Resource at 12:11pm is reported to be
in Longwood and at 12:23pm is reported to be at Chestnut Hill. A
request of a ResourceLocation. A data correction may update the
Longwood time to be 12:09pm. The update of the ResourceLocation
from 12:11pm to 12:09pm may be examined in the Journaling OSID while
the 12:11pm time would not longer be visible in current versions of
this report.

Reports may be indexed by a managed time period such as a Term
or FiscalPeriod. The evaluation dates may map to the opening and
closing dates of the time period. Evaluation dates that differ from
the time period may indicate that the transactional data is
incomplete for that time period or that the report was calculated
using a requested date range.

OsidCompendiums are subjugates to other OsidObjects in that
what is reported is tied to an instance of a dimension such as a
person, account, or an OsidCatalog .

	
start_date

	Gets the start date used in the evaluation of the transactional data on which this report is based.

	Returns:	the date

	Return type:	osid.calendaring.DateTime

	
end_date

	Gets the end date used in the evaluation of the transactional data on which this report is based.

	Returns:	the date

	Return type:	osid.calendaring.DateTime

	
is_interpolated()

	Tests if this report is interpolated within measured data or known transactions.

Interpolation may occur if the start or end date fall between
two known facts or managed time period.

	Returns:	true if this report is interpolated, false otherwise

	Return type:	boolean

	
is_extrapolated()

	Tests if this report is extrapolated outside measured data or known transactions.

Extrapolation may occur if the start or end date fall outside
two known facts or managed time period. Extrapolation may occur
within a managed time period in progress where the results of
the entire time period are projected.

	Returns:	true if this report is extrapolated, false otherwise

	Return type:	boolean

Osid Capsule

	
class dlkit.osid.objects.OsidCapsule

	OsidCapsule wraps other objects.

The interface has no meaning other than to return a set of
semantically unrelated objects from a method.

Osid Form

	
class dlkit.osid.objects.OsidForm

	Bases: dlkit.osid.markers.Identifiable, dlkit.osid.markers.Suppliable

The OsidForm is the vehicle used to create and update objects.

The form is a container for data to be sent to an update or create
method of a session. Applications should persist their own data
until a form is successfully submitted in an update or create
transaction.

The form may provide some feedback as to the validity of certain
data updates before the update transaction is issued to the
correspodning session but a successful modification of the form is
not a guarantee of success for the update transaction. A consumer
may elect to perform all updates within a single update transaction
or break up a large update intio smaller units. The tradeoff is the
granularity of error feedback vs. the performance gain of a single
transaction.

OsidForms are Identifiable. The Id of the OsidForm
is used to uniquely identify the update or create transaction and
not that of the object being updated. Currently, it is not necessary
to have these Ids persisted.

As with all aspects of the OSIDs, nulls cannot be used. Methods to
clear values are also defined in the form.

A new OsidForm should be acquired for each transaction upon an
OsidObject. Forms should not be reused from one object to
another even if the supplied data is the same as the forms may
encapsulate data specific to the object requested. Example of
changing a display name and a color defined in a color interface
extension:

ObjectForm form = session.getObjectFormForUpdate(objectId);
form.setDisplayName(“new name”);
ColorForm recordForm = form.getFormRecord(colorRecordType);
recordForm.setColor(“green”);
session.updateObject(objectId, form);

	
is_for_update()

	Tests if this form is for an update operation.

	Returns:	true if this form is for an update operation, false if for a create operation

	Return type:	boolean

	
default_locale

	Gets a default locale for DisplayTexts when a locale is not specified.

	Returns:	the default locale

	Return type:	osid.locale.Locale

	
locales

	Gets a list of locales for available DisplayText translations that can be performed using this form.

	Returns:	a list of available locales or an empty list if no translation operations are available

	Return type:	osid.locale.LocaleList

	
set_locale(language_type, script_type)

	Specifies a language and script type for DisplayText fields in this form.

Setting a locale to something other than the default locale may
affect the Metadata in this form.

If multiple locales are available for managing translations, the
Metadata indicates the fields are unset as they may be
returning a defeult value based on the default locale.

	Parameters:	
	language_type (osid.type.Type) – the language type

	script_type (osid.type.Type) – the script type

	Raise:	NullArgument – language_type or script_type is null

	Raise:	Unsupported – language_type and script_type not available from get_locales()

	
journal_comment_metadata

	Gets the metadata for the comment corresponding to this form submission.

The comment is used for describing the nature of the change to
the corresponding object for the purposes of logging and
auditing.

	Returns:	metadata for the comment

	Return type:	osid.Metadata

	
journal_comment

	

	
is_valid()

	Tests if ths form is in a valid state for submission.

A form is valid if all required data has been supplied compliant
with any constraints.

	Returns:	false if there is a known error in this form, true otherwise

	Return type:	boolean

	Raise:	OperationFailed – attempt to perform validation failed

	
validation_messages

	Gets text messages corresponding to additional instructions to pass form validation.

	Returns:	a list of messages

	Return type:	osid.locale.DisplayText

	
invalid_metadata

	Gets a list of metadata for the elements in this form which are not valid.

	Returns:	invalid metadata

	Return type:	osid.Metadata

Osid Identifiable Form

	
class dlkit.osid.objects.OsidIdentifiableForm

	Bases: dlkit.osid.objects.OsidForm

The OsidIdentifiableForm is used to create and update identifiable objects.

The form is a container for data to be sent to an update or create
method of a session.

Osid Extensible Form

	
class dlkit.osid.objects.OsidExtensibleForm

	Bases: dlkit.osid.objects.OsidForm, dlkit.osid.markers.Extensible

The OsidExtensibleForm is used to create and update extensible objects.

The form is a container for data to be sent to an update or create
method of a session.

	
required_record_types

	Gets the required record types for this form.

The required records may change as a result of other data in
this form and should be checked before submission.

	Returns:	a list of required record types

	Return type:	osid.type.TypeList

Osid Browsable Form

	
class dlkit.osid.objects.OsidBrowsableForm

	Bases: dlkit.osid.objects.OsidForm

The OsidBrowsableForm is used to create and update browsable objects.

The form is a container for data to be sent to an update or create
method of a session.

Osid Temporal Form

	
class dlkit.osid.objects.OsidTemporalForm

	Bases: dlkit.osid.objects.OsidForm

This form is used to create and update temporals.

	
start_date_metadata

	Gets the metadata for a start date.

	Returns:	metadata for the date

	Return type:	osid.Metadata

	
start_date

	Sets the start date.

	Parameters:	date (osid.calendaring.DateTime) – the new date

	Raise:	InvalidArgument – date is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – date is null

	
end_date_metadata

	Gets the metadata for an end date.

	Returns:	metadata for the date

	Return type:	osid.Metadata

	
end_date

	Sets the end date.

	Parameters:	date (osid.calendaring.DateTime) – the new date

	Raise:	InvalidArgument – date is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – date is null

Osid Subjugateable Form

	
class dlkit.osid.objects.OsidSubjugateableForm

	Bases: dlkit.osid.objects.OsidForm

This form is used to create and update dependent objects.

Osid Aggregateable Form

	
class dlkit.osid.objects.OsidAggregateableForm

	Bases: dlkit.osid.objects.OsidForm

This form is used to create and update assemblages.

Osid Containable Form

	
class dlkit.osid.objects.OsidContainableForm

	Bases: dlkit.osid.objects.OsidForm

This form is used to create and update containers.

	
sequestered_metadata

	Gets the metadata for the sequestered flag.

	Returns:	metadata for the sequestered flag

	Return type:	osid.Metadata

	
sequestered

	Sets the sequestered flag.

	Parameters:	sequestered (boolean) – the new sequestered flag

	Raise:	InvalidArgument – sequestered is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

Osid Sourceable Form

	
class dlkit.osid.objects.OsidSourceableForm

	Bases: dlkit.osid.objects.OsidForm

This form is used to create and update sourceables.

	
provider_metadata

	Gets the metadata for a provider.

	Returns:	metadata for the provider

	Return type:	osid.Metadata

	
provider

	Sets a provider.

	Parameters:	provider_id (osid.id.Id) – the new provider

	Raise:	InvalidArgument – provider_id is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – provider_id is null

	
branding_metadata

	Gets the metadata for the asset branding.

	Returns:	metadata for the asset branding.

	Return type:	osid.Metadata

	
branding

	Sets the branding.

	Parameters:	asset_ids (osid.id.Id[]) – the new assets

	Raise:	InvalidArgument – asset_ids is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – asset_ids is null

	
license_metadata

	Gets the metadata for the license.

	Returns:	metadata for the license

	Return type:	osid.Metadata

Osid Federateable Form

	
class dlkit.osid.objects.OsidFederateableForm

	Bases: dlkit.osid.objects.OsidForm

This form is used to create and update federateables.

Osid Operable Form

	
class dlkit.osid.objects.OsidOperableForm

	Bases: dlkit.osid.objects.OsidForm

This form is used to create and update operables.

	
enabled_metadata

	Gets the metadata for the enabled flag.

	Returns:	metadata for the enabled flag

	Return type:	osid.Metadata

	
enabled

	Sets the administratively enabled flag.

	Parameters:	enabled (boolean) – the new enabled flag

	Raise:	InvalidArgument – enabled is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	
disabled_metadata

	Gets the metadata for the disabled flag.

	Returns:	metadata for the disabled flag

	Return type:	osid.Metadata

	
disabled

	Sets the administratively disabled flag.

	Parameters:	disabled (boolean) – the new disabled flag

	Raise:	InvalidArgument – disabled is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

Osid Object Form

	
class dlkit.osid.objects.OsidObjectForm

	Bases: dlkit.osid.objects.OsidIdentifiableForm, dlkit.osid.objects.OsidExtensibleForm, dlkit.osid.objects.OsidBrowsableForm

The OsidObjectForm is used to create and update OsidObjects.

The form is not an OsidObject but merely a container for data to
be sent to an update or create method of a session. A provider may
or may not combine the OsidObject and OsidObjectForm
interfaces into a single object.

Generally, a set method parallels each get method of an
OsidObject. Additionally, Metadata may be examined for each
data element to assist in understanding particular rules concerning
acceptable data.

The form may provide some feedback as to the validity of certain
data updates before the update transaction is issued to the
correspodning session but a successful modification of the form is
not a guarantee of success for the update transaction. A consumer
may elect to perform all updates within a single update transaction
or break up a large update intio smaller units. The tradeoff is the
granularity of error feedback vs. the performance gain of a single
transaction.

As with all aspects of the OSIDs, nulls cannot be used. Methods to
clear values are also defined in the form.

A new OsidForm should be acquired for each transaction upon an
OsidObject. Forms should not be reused from one object to
another even if the supplied data is the same as the forms may
encapsulate data specific to the object requested. Example of
changing a display name and a color defined in a color interface
extension:

ObjectForm form = session.getObjectFormForUpdate(objectId);
form.setDisplayName(“new name”);
ColorForm recordForm = form.getFormRecord(colorRecordType);
recordForm.setColor(“green”);
session.updateObject(objectId, form);

	
display_name_metadata

	Gets the metadata for a display name.

	Returns:	metadata for the display name

	Return type:	osid.Metadata

	
display_name

	Sets a display name.

A display name is required and if not set, will be set by the
provider.

	Parameters:	display_name (string) – the new display name

	Raise:	InvalidArgument – display_name is invalid

	Raise:	NoAccess – Metadata.isReadonly() is true

	Raise:	NullArgument – display_name is null

	
description_metadata

	Gets the metadata for a description.

	Returns:	metadata for the description

	Return type:	osid.Metadata

	
description

	Sets a description.

	Parameters:	description (string) – the new description

	Raise:	InvalidArgument – description is invalid

	Raise:	NoAccess – Metadata.isReadonly() is true

	Raise:	NullArgument – description is null

	
genus_type_metadata

	Gets the metadata for a genus type.

	Returns:	metadata for the genus

	Return type:	osid.Metadata

	
genus_type

	Sets a genus.

A genus cannot be cleared because all objects have at minimum a
root genus.

	Parameters:	genus_type (osid.type.Type) – the new genus

	Raise:	InvalidArgument – genus_type is invalid

	Raise:	NoAccess – Metadata.isReadonly() is true

	Raise:	NullArgument – genus_type is null

Osid Relationship Form

	
class dlkit.osid.objects.OsidRelationshipForm

	Bases: dlkit.osid.objects.OsidObjectForm, dlkit.osid.objects.OsidTemporalForm

This form is used to create and update relationshps.

Osid Catalog Form

	
class dlkit.osid.objects.OsidCatalogForm

	Bases: dlkit.osid.objects.OsidObjectForm, dlkit.osid.objects.OsidSourceableForm, dlkit.osid.objects.OsidFederateableForm

This form is used to create and update catalogs.

Osid Rule Form

	
class dlkit.osid.objects.OsidRuleForm

	Bases: dlkit.osid.objects.OsidObjectForm, dlkit.osid.objects.OsidOperableForm

This form is used to create and update rules.

	
rule_metadata

	Gets the metadata for an associated rule.

	Returns:	metadata for the rule

	Return type:	osid.Metadata

	
rule

	Sets a rule.

	Parameters:	rule_id (osid.id.Id) – the new rule

	Raise:	InvalidArgument – rule_id is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – rule_id is null

Osid Enabler Form

	
class dlkit.osid.objects.OsidEnablerForm

	Bases: dlkit.osid.objects.OsidRuleForm, dlkit.osid.objects.OsidTemporalForm

This form is used to create and update enablers.

	
schedule_metadata

	Gets the metadata for an associated schedule.

	Returns:	metadata for the schedule

	Return type:	osid.Metadata

	
schedule

	Sets a schedule.

	Parameters:	schedule_id (osid.id.Id) – the new schedule

	Raise:	InvalidArgument – schedule_id is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – schedule_id is null

	
event_metadata

	Gets the metadata for an associated event.

	Returns:	metadata for the event

	Return type:	osid.Metadata

	
event

	Sets an event.

	Parameters:	event_id (osid.id.Id) – the new event

	Raise:	InvalidArgument – event_id is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – event_id is null

	
cyclic_event_metadata

	Gets the metadata for the cyclic event.

	Returns:	metadata for the cyclic event

	Return type:	osid.Metadata

	
cyclic_event

	Sets the cyclic event.

	Parameters:	cyclic_event_id (osid.id.Id) – the new cyclic event

	Raise:	InvalidArgument – cyclic_event_id is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – cyclic_event_id is null

	
demographic_metadata

	Gets the metadata for an associated demographic.

	Returns:	metadata for the resource.

	Return type:	osid.Metadata

	
demographic

	Sets a resource demographic.

	Parameters:	resource_id (osid.id.Id) – the new resource

	Raise:	InvalidArgument – resource_id is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – resource_id is null

Osid Constrainer Form

	
class dlkit.osid.objects.OsidConstrainerForm

	Bases: dlkit.osid.objects.OsidRuleForm

This form is used to create and update constrainers.

Osid Processor Form

	
class dlkit.osid.objects.OsidProcessorForm

	Bases: dlkit.osid.objects.OsidRuleForm

This form is used to create and update processors.

Osid Governator Form

	
class dlkit.osid.objects.OsidGovernatorForm

	Bases: dlkit.osid.objects.OsidObjectForm, dlkit.osid.objects.OsidOperableForm, dlkit.osid.objects.OsidSourceableForm

This form is used to create and update governators.

Osid Compendium Form

	
class dlkit.osid.objects.OsidCompendiumForm

	Bases: dlkit.osid.objects.OsidObjectForm, dlkit.osid.objects.OsidSubjugateableForm

This form is used to create and update governators.

	
start_date_metadata

	Gets the metadata for a start date.

	Returns:	metadata for the date

	Return type:	osid.Metadata

	
start_date

	Sets the start date.

	Parameters:	date (osid.calendaring.DateTime) – the new date

	Raise:	InvalidArgument – date is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – date is null

	
end_date_metadata

	Gets the metadata for an end date.

	Returns:	metadata for the date

	Return type:	osid.Metadata

	
end_date

	Sets the end date.

	Parameters:	date (osid.calendaring.DateTime) – the new date

	Raise:	InvalidArgument – date is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	Raise:	NullArgument – date is null

	
interpolated_metadata

	Gets the metadata for the interpolated flag.

	Returns:	metadata for the interpolated flag

	Return type:	osid.Metadata

	
interpolated

	Sets the interpolated flag.

	Parameters:	interpolated (boolean) – the new interpolated flag

	Raise:	InvalidArgument – interpolated is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

	
extrapolated_metadata

	Gets the metadata for the extrapolated flag.

	Returns:	metadata for the extrapolated flag

	Return type:	osid.Metadata

	
extrapolated

	Sets the extrapolated flag.

	Parameters:	extrapolated (boolean) – the new extrapolated flag

	Raise:	InvalidArgument – extrapolated is invalid

	Raise:	NoAccess – Metadata.isReadOnly() is true

Osid Capsule Form

	
class dlkit.osid.objects.OsidCapsuleForm

	Bases: dlkit.osid.objects.OsidForm

This form is used to create and update capsules.

Osid List

	
class dlkit.osid.objects.OsidList

	OsidList is the top-level interface for all OSID lists.

An OSID list provides sequential access, one at a time or many at a
time, access to a set of elements. These elements are not required
to be OsidObjects but generally are. The element retrieval methods
are defined in the sub-interface of OsidList where the
appropriate return type is defined.

Osid lists are a once pass through iteration of elements. The size
of the object set and the means in which the element set is
generated or stored is not known. Assumptions based on the length of
the element set by copying the entire contents of the list into a
fixed buffer should be done with caution a awareness that an
implementation may return a number of elements ranging from zero to
infinity.

Lists are returned by methods when multiple return values are
possible. There is no guarantee that successive calls to the same
method will return the same set of elements in a list. Unless an
order is specified in an interface definition, the order of the
elements is not known.

	
has_next()

	Tests if there are more elements in this list.

	Returns:	true if more elements are available in this list, false if the end of the list has been reached

	Return type:	boolean

	
available()

	Gets the number of elements available for retrieval.

The number returned by this method may be less than or equal to
the total number of elements in this list. To determine if the
end of the list has been reached, the method has_next()
should be used. This method conveys what is known about the
number of remaining elements at a point in time and can be used
to determine a minimum size of the remaining elements, if known.
A valid return is zero even if has_next() is true.

This method does not imply asynchronous usage. All OSID methods
may block.

	Returns:	the number of elements available for retrieval

	Return type:	cardinal

	
skip(n)

	Skip the specified number of elements in the list.

If the number skipped is greater than the number of elements in
the list, hasNext() becomes false and available() returns zero
as there are no more elements to retrieve.

	Parameters:	n (cardinal) – the number of elements to skip

Osid Node

	
class dlkit.osid.objects.OsidNode

	Bases: dlkit.osid.markers.Identifiable, dlkit.osid.markers.Containable

A node interface for hierarchical objects.

The Id of the node is the Id of the object represented at
this node.

	
is_root()

	Tests if this node is a root in the hierarchy (has no parents).

A node may have no more parents available in this node structure
but is not a root in the hierarchy. If both is_root() and
has_parents() is false, the parents of this node may be
accessed thorugh another node structure retrieval.

	Returns:	true if this node is a root in the hierarchy, false otherwise

	Return type:	boolean

	
has_parents()

	Tests if any parents are available in this node structure.

There may be no more parents in this node structure however
there may be parents that exist in the hierarchy.

	Returns:	true if this node has parents, false otherwise

	Return type:	boolean

	
parent_ids

	Gets the parents of this node.

	Returns:	the parents of this node

	Return type:	osid.id.IdList

	
is_leaf()

	Tests if this node is a leaf in the hierarchy (has no children).

A node may have no more children available in this node
structure but is not a leaf in the hierarchy. If both
is_leaf() and has_children() is false, the children of
this node may be accessed thorugh another node structure
retrieval.

	Returns:	true if this node is a leaf in the hierarchy, false otherwise

	Return type:	boolean

	
has_children()

	Tests if any children are available in this node structure.

There may be no more children available in this node structure
but this node may have children in the hierarchy.

	Returns:	true if this node has children, false otherwise

	Return type:	boolean

	
child_ids

	Gets the children of this node.

	Returns:	the children of this node

	Return type:	osid.id.IdList

Managers

Osid Profile

	
class dlkit.osid.managers.OsidProfile

	Bases: dlkit.osid.markers.Sourceable

The OsidProfile defines the interoperability areas of an OSID.

An OsidProfile is implemented by an OsidManager. The top
level OsidProfile tests for version compatibility. Each OSID
extends this interface to include its own interoperability
definitions within its managers.

	
ident

	Gets an identifier for this service implementation.

The identifier is unique among services but multiple
instantiations of the same service use the same Id. This
identifier is the same identifier used in managing OSID
installations.

	Returns:	the Id

	Return type:	osid.id.Id

	
display_name

	Gets a display name for this service implementation.

	Returns:	a display name

	Return type:	osid.locale.DisplayText

	
description

	Gets a description of this service implementation.

	Returns:	a description

	Return type:	osid.locale.DisplayText

	
version

	Gets the version of this service implementation.

	Returns:	the service implementation version

	Return type:	osid.installation.Version

	
release_date

	Gets the date this service implementation was released.

	Returns:	the release date

	Return type:	osid.calendaring.DateTime

	
supports_osid_version(version)

	Test for support of an OSID specification version.

	Parameters:	version (osid.installation.Version) – the specification version to test

	Returns:	true if this manager supports the given OSID version, false otherwise

	Return type:	boolean

	
locales

	Gets the locales supported in this service.

	Returns:	list of locales supported

	Return type:	osid.locale.LocaleList

	
supports_journal_rollback()

	Test for support of a journaling rollback service.

	Returns:	true if this manager supports the journal rollback, false otherwise

	Return type:	boolean

	
supports_journal_branching()

	Test for support of a journal branching service.

	Returns:	true if this manager supports the journal branching, false otherwise

	Return type:	boolean

	
branch_id

	Gets the Branch Id representing this service branch.

	Returns:	the branch Id

	Return type:	osid.id.Id

	Raise:	Unimplemented – supports_journal_branching() is false

	
branch

	Gets this service branch.

	Returns:	the service branch

	Return type:	osid.journaling.Branch

	Raise:	OperationFailed – unable to complete request

	Raise:	Unimplemented – supports_journal_branching() is false

	
proxy_record_types

	Gets the proxy record Types supported in this service.

If no proxy manager is available, an empty list is returned.

	Returns:	list of proxy record types supported

	Return type:	osid.type.TypeList

	
supports_proxy_record_type(proxy_record_type)

	Test for support of a proxy type.

	Parameters:	proxy_record_type (osid.type.Type) – a proxy record type

	Returns:	true if this service supports the given proxy record type, false otherwise

	Return type:	boolean

	Raise:	NullArgument – proxy_record_type is null

 nav.xhtml

 Table of Contents

 		Welcome to the DLKit documentation!

 		Tutorial: DLKit Learning Service Basics

 		The Runtime Manager and Proxy Authentication

 		Loading the Learning Manager

 		Looking up Objective Banks

 		OSID Ids

 		Looking up Objectives

 		Authorization Hints

 		The Objective Object

 		OSID Types

 		Assessment

 		Summary

 		Service Managers

 		Assessment Manager

 		Assessment Profile Methods

 		Bank Lookup Methods

 		Bank Admin Methods

 		Bank Hierarchy Methods

 		Bank Hierarchy Design Methods

 		Bank

 		Bank

 		Assessment Methods

 		Item Lookup Methods

 		Item Query Methods

 		Item Admin Methods

 		Assessment Lookup Methods

 		Assessment Query Methods

 		Assessment Admin Methods

 		Assessment Basic Authoring Methods

 		Assessment Offered Lookup Methods

 		Assessment Offered Query Methods

 		Assessment Offered Admin Methods

 		Assessment Taken Lookup Methods

 		Assessment Taken Query Methods

 		Assessment Taken Admin Methods

 		Objects

 		Question

 		Question Form

 		Question List

 		Answer

 		Answer Form

 		Answer List

 		Item

 		Item Form

 		Item List

 		Assessment

 		Assessment Form

 		Assessment List

 		Assessment Offered

 		Assessment Offered Form

 		Assessment Offered List

 		Assessment Taken

 		Assessment Taken Form

 		Assessment Taken List

 		Assessment Section

 		Assessment Section List

 		Bank Form

 		Bank List

 		Response List

 		Queries

 		Question Query

 		Answer Query

 		Item Query

 		Assessment Query

 		Assessment Offered Query

 		Assessment Taken Query

 		Bank Query

 		Records

 		Question Record

 		Question Query Record

 		Question Form Record

 		Answer Record

 		Answer Query Record

 		Answer Form Record

 		Item Record

 		Item Query Record

 		Item Form Record

 		Assessment Record

 		Assessment Query Record

 		Assessment Form Record

 		Assessment Offered Record

 		Assessment Offered Query Record

 		Assessment Offered Form Record

 		Assessment Taken Record

 		Assessment Taken Query Record

 		Assessment Taken Form Record

 		Assessment Section Record

 		Bank Record

 		Bank Query Record

 		Bank Form Record

 		Response Record

 		Rules

 		Response

 		Commenting

 		Summary

 		Service Managers

 		Commenting Manager

 		Commenting Profile Methods

 		Book Lookup Methods

 		Book Admin Methods

 		Book Hierarchy Methods

 		Book Hierarchy Design Methods

 		Book

 		Book

 		Comment Lookup Methods

 		Comment Query Methods

 		Comment Admin Methods

 		Objects

 		Comment

 		Comment Form

 		Comment List

 		Book Form

 		Book List

 		Queries

 		Comment Query

 		Book Query

 		Records

 		Comment Record

 		Comment Query Record

 		Comment Form Record

 		Book Record

 		Book Query Record

 		Book Form Record

 		Learning

 		Summary

 		Service Managers

 		Learning Manager

 		Learning Profile Methods

 		Objective Bank Lookup Methods

 		Objective Bank Admin Methods

 		Objective Bank Hierarchy Methods

 		Objective Bank Hierarchy Design Methods

 		Objective Bank

 		Objective Bank

 		Objective Lookup Methods

 		Objective Admin Methods

 		Objective Hierarchy Methods

 		Objective Hierarchy Design Methods

 		Objective Sequencing Methods

 		Objective Requisite Methods

 		Objective Requisite Assignment Methods

 		Activity Lookup Methods

 		Activity Admin Methods

 		Objects

 		Objective

 		Objective Form

 		Objective List

 		Activity

 		Activity Form

 		Activity List

 		Objective Bank Form

 		Objective Bank List

 		Queries

 		Objective Query

 		Activity Query

 		Objective Bank Query

 		Records

 		Objective Record

 		Objective Query Record

 		Objective Form Record

 		Activity Record

 		Activity Query Record

 		Activity Form Record

 		Objective Bank Record

 		Objective Bank Query Record

 		Objective Bank Form Record

 		Repository

 		Summary

 		Service Managers

 		Repository Manager

 		Repository Profile Methods

 		Repository Lookup Methods

 		Repository Admin Methods

 		Repository

 		Repository

 		Asset Lookup Methods

 		Asset Query Methods

 		Asset Admin Methods

 		Objects

 		Asset

 		Asset Form

 		Asset List

 		Asset Content

 		Asset Content Form

 		Asset Content List

 		Repository Form

 		Repository List

 		Queries

 		Asset Query

 		Asset Content Query

 		Repository Query

 		Records

 		Asset Record

 		Asset Query Record

 		Asset Form Record

 		Asset Content Record

 		Asset Content Query Record

 		Asset Content Form Record

 		Repository Record

 		Repository Query Record

 		Repository Form Record

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_static/down-pressed.png

_static/comment.png

_static/plus.png

